Skip to main content

Photovoltaic Solar Energy Conversion

  • Chapter
  • First Online:
The Sun and Photovoltaic Technologies

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this chapter, general information about photovoltaic solar energy conversion, silicon and other solar cells , solar modules , solar batteries, charge controller , inverter , urban and rural application of solar cells , PV solar plants, solar module efficiency dependence on their orientation and tilt angle, solar modules soiling , smart systems and mini-grids , economy of PV system s, and sustainability of the green economy is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radmilovic VV (2016) Transparent nanocomposite films for plastic electronics applications. Ph.D. thesis, University of Belgrade, Faculty of Technology and Metallurgy, Belgrade

    Google Scholar 

  2. Palz W (1978) Solar electricity-an economic approach to solar energy. UNESCO

    Google Scholar 

  3. Angrist WS (1971) Direct energy conversion. Allyn and Bacon Inc., Boston

    Google Scholar 

  4. Green AM (1982) Solar cells-operating principles, technology and system applications. Prentice Hall Inc., New York

    Google Scholar 

  5. Matsuoka T et al (1990) Solar Cells 29:361

    Article  Google Scholar 

  6. Chronar Co. (1997) Technical characteristics of standard photoconversion glass/a-Si module. Princeton, USA

    Google Scholar 

  7. Yano M et al (1987) Thin Solid Films 146:75

    Article  Google Scholar 

  8. Kalogirou AS (2017) McEvoy’s handbook of photovoltaics: fundamentals and applications. Academic Press

    Google Scholar 

  9. IRENA (2018) Renewable power generation cost in 2017. International Renewable Energy Agency

    Google Scholar 

  10. Boxwell M (2015) Solar electricity handbook. Greenstream Publishing, Coventry

    Google Scholar 

  11. Kalogirou AS (2014) Solar energy engineering—processes and systems, 2 nd edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  12. Pode R, Diouf B (2011) Solar lighting. Springer, London

    Book  Google Scholar 

  13. Foster R, Chassemi M, Cota A (2010) Solar energy: renewable energy and the environment. CRC Press, Boca Raton

    Google Scholar 

  14. Labudovic B et al (2011) Basic applications of photovoltaic’s systems. Energetika Marketing, Zagreb (in Serbian)

    Google Scholar 

  15. Manimekalai P, Harikumar R, Raghavan S (2013) An overview of batteries for photovoltaic (PV) systems. Int J Comput Appl (0975–8887) 82(12)

    Google Scholar 

  16. Tracer 1210RN—maximum power point tracking solar charge controller. Instruction manual, EPSOLAR, utility model patent no. 201120064092.1 (2012)

    Google Scholar 

  17. Rajakovic N, Tasic D (2008) Distributive and industrial nets. Akademska Misao, Beograd (in Serbian)

    Google Scholar 

  18. Tasic SD, Rajakovic LN, Stojanovic SM (2014) Electro energetic components. University of Nis, Faculty of electronics, Nis (in Serbian)

    Google Scholar 

  19. Pavlovic MT, Mirjanic LD, Milosavljevic DD (2018) Electric power industry in Serbia and the Republic of Srpska. Academy of Sciences and Arts of the Republic of Srpska, Banja Luka (in Serbian)

    Google Scholar 

  20. Cekić N et al (2015) Application of solar cells in contemporary architecture. Contemp Mater VI–2:104–114

    Google Scholar 

  21. Pantić SL et al (2016) Electrical energy generation with differently oriented PV modules as façade elements. Therm Sci 20(4):1377–1386

    Article  Google Scholar 

  22. Pavlović TM, Tripanagnostopoulos Y, Mirjanić LD, Milosavljevć DD (2015) Solar energy in Serbia, Greece and the Republic of Srpska. Academy of Sciences and Arts of the Republic of Srpska, Banja Luka

    Google Scholar 

  23. Pantić Ranđelović SL (2017) The study of energy efficiency of PV solar modules depending on their geographical orientation, tilt angle and their temperature in real climatic conditions in Nis. Ph.D. thesis, Faculty of Sciences and Mathematics, University of Nis, Nis, Serbia (in Serbian)

    Google Scholar 

  24. Pantic SL, Pavlovic TM (2016) Determination of physical characteristics of horizontally positioned solar module in real climate conditions in Nis. Serb Facta Univ 4(1):37–51

    Google Scholar 

  25. Radonjic Mitic SI (2018) Investigation of energy efficiency of PV solar modules depending on their soiling in real climate conditions in Nis. Doctoral dissertation, University of Nis, Faculty of sciences and mathematics, Nis (in Serbian)

    Google Scholar 

  26. Radonjić SI et al (2017) Investigation of the impact of atmospheric pollutants on solar module energy efficiency. Therm Sci 21(5):21–30

    Article  Google Scholar 

  27. Radonjić SI et al (2016) Investigation of solar module energy efficiency depending on their surface soiling degree. In: Proceedings of scientific conference Unitech 2016. Gabrovo, vol 1, pp 147–151

    Google Scholar 

  28. Radonjić SI et al (2017) Investigation of the energy efficiency of soiled solar module mounted at the optimal angle. In: Proceedings of international scientific conference Unitech 2017. Gabrovo, vol I, pp 84–88

    Google Scholar 

  29. Lasnier F, Ang GT (1990) Photovoltaic engineering handbook. Adam Higler

    Google Scholar 

  30. Neville CR (1995) Solar energy conversion—the solar cell, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  31. https://www.slideserve.com/maleah/pv-system-design-and-installlation

  32. http://www.daviddarling.info/encyclopedia/

  33. Spasojevic AZ, Popovic AZ (1979) Electrotechnical and electronic materials. Naucna Knjiga, Belgrade (in Serbian)

    Google Scholar 

  34. Stojanovic M (1986) Primenjena nauka 5, 7

    Google Scholar 

  35. https://en.wikipedia.org/

  36. www.greenrhinoenergy.com/solar/technologies/pv_concentration.php

  37. https://www.osa-opn.org/home/articles/volume_22/issue_1/features/solar_concentrators_using_optics_to_boost_photovo/

  38. Photovoltaics report, Fraunhofer Institute for Solar Energy Systems, ISE, Freiburg, 27 Aug 2018

    Google Scholar 

  39. www.electronics-tutorials.ws

  40. https://www.designboom.com/project/photovoltaic-honeycomb-glass-screen-facade/

  41. https://www.asu.edu/fm/images/solarization/tyler.jpg

  42. https://www.designboom.com/science/solar-forest-charging-station-for-electric-vehicles/

  43. http://www.designboom.com/wp-content/uploads/2015/05/germany-pavilion-expo-milan-2015-fields-of-ideas-designboom-01.jpg

  44. http://www.ecoco2.com/images/blog/2011/3F-quai-de-Valmy-big.jpg

  45. http://en.stonkcash.com/energy-dubai/

  46. http://www.citycool.info/wp-content/uploads/2014/11/Cite%CC%81-du-Design-Platine-Copyright-LIN-Finn-Geipel-et-Giulia-Andi-photographe-Jan-Oliver-Kunze.jpg; https://www.homedit.com/solar-powered-international-design-center-revealed/

  47. https://www.pinterest.com/pin/480055641504922067/visual-search/?x=16&y=11&w=530&h=345

  48. https://www.urbangardensweb.com/2013/04/02/sustainable-high-rise-greens-sydney-skyline/

  49. https://en.wikipedia.org/wiki/Seocho_Garak_Tower_East#/media/File:Seocho_Garak_Tower_East.jpg

  50. https://apimagesblog.com/blog/2016/9/25/indias-hidden-valley

  51. https://www.irena.org/offgrid

  52. https://insideclimatenews.org/news/20121113/germany-energiewende-clean-energy-economy-renewables-solar-wind-biomass-nuclear-renewable-energy-transformation

  53. https://twitter.com/SunSol_pl

  54. https://greensparksolar.com/tag/residential-solar/page/2/

  55. https://www.centuryroofandsolar.com/blog/solar-power-growth-rural-america/

  56. https://solarinstallationpanel.blogspot.com/2013/12/solar-schematic-diagram.html

  57. http://www.shout92.com/top-5-largest-solar-panel-farms-in-world/

  58. https://en.wikipedia.org/wiki/Gujarat_Solar_Park

  59. http://www.energia.eiffage.es/en/2014/11/10/eiffage-energia-is-involved-in-the-construction-of-the-biggest-pv-plant-in-europe/

  60. https://www.businesswire.com/news/home/20131031006341/en/NRG-Energy-NRG-Yield-SunPower-Commercial-Operations

  61. Picotti G et al (2018) Soiling of solar collectors—modelling approaches for airborne dust and its interactions with surfaces. Renew Sustain Energy Rev 81(2):2343–2357

    Article  Google Scholar 

  62. Köntges M et al (2017) Assessment of photovoltaic module failures in the field. Report IEA-PVPS T13-09:2017

    Google Scholar 

  63. Ghazi S, Sayigh A, Ip K (2014) Dust effect on flat surfaces-a review paper. Renew Sustain Energy Rev 33:742–751

    Article  Google Scholar 

  64. Moharram KA et al (2013) Influence of cleaning using water and surfactants on the performance of photovoltaic panels. Energy Convers Manag 68:266–272

    Article  Google Scholar 

  65. Knapp V, Kulisic P (1985) New energy sources. Skolska Knjiga, Zagreb (in Serbian)

    Google Scholar 

  66. Menniti D (2017) Solar energy and PV systems in smart cities. Hindawi PC

    Google Scholar 

  67. Pearsall NM (2017) The performance of photovoltaics (PV) Systems. Elsevier, Amsterdam

    Google Scholar 

  68. Ymeri H (2016) Strategic study, the need of an energy strategy for South-East Europe. Balcan Trust for Democracy, Tirana

    Google Scholar 

  69. Messenger R, Ventre J (2010) Photovoltaic systems engineering. CEC Press, Taylor & Francis Group, USA

    Google Scholar 

  70. Chiras D, Aram R, Nelson K (2009) Power from the sun—achieving energy independence. New Society Publishers, Canada

    Google Scholar 

  71. Sen Z (2008) Solar energy fundamentals and modeling techniques—atmosphere, environment, climate change and renewable energy. Springer

    Google Scholar 

  72. Masters MG (2004) Renewable and efficient electric power systems. Wiley, Hoboken

    Book  Google Scholar 

  73. Green AM, Wenham RS, Watt EM (2006) Applied photovoltaics, 2nd edn. Earthscan Ltd.

    Google Scholar 

  74. Tiwari NG, Dubey S (2010) Fundamentals of photovoltaic modules and their applications. RSC Publishing Energy Series No. 2

    Google Scholar 

  75. Handbook of photovoltaic science and engineering. Wiley, New York

    Google Scholar 

  76. Practical handbook of photovoltaics: fundamentals and applications. Elsevier Science Ltd.

    Google Scholar 

  77. Markvart T, Castaner L (2006) Solar cells. Elsevier, Amsterdam

    Google Scholar 

  78. Duffie AJ, Beckman AW (1991) Solar engineering and thermal processes, 2nd edn. Wiley, New York

    Google Scholar 

  79. Chu Y (2011) Review and comparison of different solar energy technologies. Global Energy Network Institute

    Google Scholar 

  80. Altas IH, Sharaf AM (2014) Solar energy and PV systems. Hindawi PC

    Google Scholar 

  81. Solanki CS (2013) Solar photovoltaic technology and systems. PHI Leaming Private Limited, Delhi

    Book  Google Scholar 

  82. Lorenco E et al (1994) Solar electricity. Progensa, Sevilla

    Google Scholar 

  83. Gevorkian P (2008) Solar power in building design, the engineer’s complete design resource. Mc Graw Hill, New York

    Google Scholar 

  84. Lotsch VKH, Goetzberger A, Hoffmann UV (2005) Photovoltaic solar energy generation. Springer, series in optical sciences, vol 112

    Google Scholar 

  85. Mijatovic V (2011) Distributed energy resources. Akademska knjiga, Beograd (in Serbian)

    Google Scholar 

  86. Milosavljevic DD (2013) The study of energy efficiency of PV solar power plants in the Republic of Serbia and the Republic of Srpska. Ph.D. thesis, Faculty of Sciences and Mathematics, University of Nis, Nis, Serbia (in Serbian)

    Google Scholar 

  87. Parida B, Iniyan S, Goic R (2011) A review of solar photovoltaic technologies. Renew Sustain Energy Rev 15(3):1625–1636

    Article  Google Scholar 

  88. Green M (2007) Thin-film solar cells: Review of materials, technologies and commercial status. J Mater Sci Mater Electron 18(1):15–19

    Article  Google Scholar 

  89. Ullal SH (2008) Overview and challenges of thin film solar electric technologies. In: Conference paper at the world renewable energy congress X and exhibition. Available online at http://www.scribd.com/doc/58670014/NREL-Thin-Film-Overview-2008. http://www.pvresources.com/en/solarcells.php

  90. Klise TG, Stein SJ (2009) Models used to assess the performance of photovoltaic systems. Sandia Report, Sand 2009-8258

    Google Scholar 

  91. Angelis-Dimakis A et al (2011) Methods and tools to evaluate the availability of renewable energy sources. Renew Sustain Energy Rev 15:1182–1200

    Article  Google Scholar 

  92. Mousazadeh H et al (2009) A review of principle and sun-tracking methods for maximizing solar systems output. Renew Sustain Energy Rev 13(8):1800–1818

    Article  Google Scholar 

  93. Súri M, Huld AT, Dunlop DE (2005) PV-GIS: a web-based solar radiation database for the calculation of PV potential in Europe. Int J Sustain Energ 24(2):55–67

    Article  Google Scholar 

  94. Súri M (2007) Solar resource data and tools for an assessment of photovoltaic systems, Chapter 7. Status report 2006, EUR 22752 EN, pp 96–102

    Google Scholar 

  95. Aelenei L, Goncalves H (2013) From solar building design to net zero energy buildings: performance insights of an office building. Energy Procedia 48:1236–1243

    Article  Google Scholar 

  96. Bazilian M et al (2001) Photovoltaic cogeneration in the built environment. Sol Energy 71:57–69

    Article  Google Scholar 

  97. Brinkworth JB et al (1997) Thermal regulation of photovoltaic cladding. Sol Energy 61:169–179

    Article  Google Scholar 

  98. Brinkworth JB, Sandberg M (2006) Design procedure for cooling ducts to minimize efficiency loss due to temperature rise in PV arrays. Sol Energy 80:89–103

    Article  Google Scholar 

  99. Charron R, Athienitis KA (2006) Optimization of the performance of double-facades with integrated photovoltaic panels and motorized blinds. Sol Energy 80:482–491

    Article  Google Scholar 

  100. Chemisana D, Ibanez M (2010) Linear Fresnel concentrators for building integrated applications. Energy Convers Manage 51:1476–1480

    Article  Google Scholar 

  101. Mallick KT, Eames CP, Norton B (2007) Using air flow to alleviate temperature elevation in solar cells within asymmetric compound parabolic concentrators. Sol Energy 81:173–184

    Article  Google Scholar 

  102. Skoplaki E, Palyvos AJ (2009) Operating temperature of photovoltaic modules: a survey of pertinent correlations. Renew Energy 34:23–29

    Article  Google Scholar 

  103. Skoplaki E, Palyvos AJ (2009) On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol Energy 83:614–624

    Article  Google Scholar 

  104. Skoplaki E, Boudouris GA, Palyvos AJ (2008) A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Sol Energy Mater Sol Cells 92:1393–1402

    Article  Google Scholar 

  105. Pantić SL et al (2016) The assessment of different models to predict solar module temperature, output power and efficiency for Nis. Serbia Energy 109:38–48

    Article  Google Scholar 

  106. Radivojević A et al (2015) Influence of climate and air pollution on solar energy development in Serbia. Therm Sci 19:311–322

    Article  Google Scholar 

  107. Milosavljević DD et al (2017) Photovoltaic technology: economical framework. In: Proceedings of 7th scientific conference “Economics and Management—Based on New Technologies—EMoNT-2017”. SaTCIP Publisher Ltd., Vrnjačka Banja, Serbia, pp 136–144

    Google Scholar 

  108. Solar energy perspectives, International Energy Agency (IEA), OECO/IEA, France, www.iea.org

  109. BP energy outlook, 2018 edition, BP energy economics https://www.bp.com/energyoutlook#BPstats

  110. Trends 2018 in photovoltaic applications, survey report of selected IEA countries between 1992 and 2017, photovoltaic power systems programme, report IEA PVPS T1-34:2018, http://www.iea-pvps.org/fileadmin/dam/public/report/statistics/2018_iea-pvps_report_2018.pdf

  111. Pulfrey LD (1978) Photovoltaic power generation. Van Nostrand Reinhold Co., New York

    Google Scholar 

  112. Sanyo Co. (1997) Technical characteristics of photovoltaic products. Sumoto, Japan

    Google Scholar 

  113. http://www.pvresources.com/en/solarcells.php

  114. http://www.powerfromthesun.net/book.html

  115. https://ocw.tudelft.nl/wp-content/uploads/solar_energy_section_19_3_3.pdf

  116. https://www.scribd.com/document/34451850/solar-power-based-ups-system

  117. https://en.wikipedia.org/wiki/Growth_of_photovoltaics

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Pavlovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pavlovic, T., Tsankov, P.T., Cekić, N.D., Radonjić Mitić, I.S. (2020). Photovoltaic Solar Energy Conversion. In: Pavlovic, T. (eds) The Sun and Photovoltaic Technologies. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-22403-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22403-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22402-8

  • Online ISBN: 978-3-030-22403-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics