Skip to main content

Macrocanonical Models for Texture Synthesis

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

In this article we consider macrocanonical models for texture synthesis. In these models samples are generated given an input texture image and a set of features which should be matched in expectation. It is known that if the images are quantized, macrocanonical models are given by Gibbs measures, using the maximum entropy principle. We study conditions under which this result extends to real-valued images. If these conditions hold, finding a macrocanonical model amounts to minimizing a convex function and sampling from an associated Gibbs measure. We analyze an algorithm which alternates between sampling and minimizing. We present experiments with neural network features and study the drawbacks and advantages of using this sampling scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atchadé, Y.F., Fort, G., Moulines, E.: On perturbed proximal gradient algorithms. J. Mach. Learn. Res. 18, 310–342 (2017). Paper No. 10, 33

    MathSciNet  MATH  Google Scholar 

  2. Bruna, J., Mallat, S.: Multiscale sparse microcanonical models. arXiv e-prints, arXiv:1801.02013, January 2018

  3. Cano, D., Minh, T.: Texture synthesis using hierarchical linear transforms. Signal Process. 15(2), 131–148 (1988)

    Article  Google Scholar 

  4. De Bortoli, V., Durmus, A., Pereyra, M., Fernandez Vidal, A.: Stochastic optimization with unadjusted kernel: the SOUK algorithm (2019, preprint)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  6. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV, pp. 1033–1038 (1999)

    Google Scholar 

  7. Gagalowicz, A., Ma, S.D.: Model driven synthesis of natural textures for 3-D scenes. Comput. Graph. 10(2), 161–170 (1986)

    Article  Google Scholar 

  8. Galerne, B., Leclaire, A., Rabin, J.: A texture synthesis model based on semi-discrete optimal transport in patch space. SIIMS 11(4), 2456–2493 (2018)

    Article  MathSciNet  Google Scholar 

  9. Galerne, B., Gousseau, Y., Morel, J.: Random phase textures: theory and synthesis. IEEE Trans. Image Process. 20(1), 257–267 (2011)

    Article  MathSciNet  Google Scholar 

  10. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: NIPS, pp. 262–270 (2015)

    Google Scholar 

  11. Gatys, L.A., Ecker, A.S., Bethge, M., Hertzmann, A., Shechtman, E.: Controlling perceptual factors in neural style transfer. In: CVPR, pp. 3730–3738 (2017)

    Google Scholar 

  12. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.J.: A kernel method for the two-sample-problem. In: NIPS, pp. 513–520 (2006)

    Google Scholar 

  13. Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. In: ICIP, pp. 648–651 (1995)

    Google Scholar 

  14. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)

    Article  MathSciNet  Google Scholar 

  15. Jetchev, N., Bergmann, U., Vollgraf, R.: Texture synthesis with spatial generative adversarial networks. CoRR (2016)

    Google Scholar 

  16. Liu, G., Gousseau, Y., Xia, G.: Texture synthesis through convolutional neural networks and spectrum constraints. In: ICPR, pp. 3234–3239 (2016)

    Google Scholar 

  17. Lu, Y., Zhu, S., Wu, Y.N.: Learning FRAME models using CNN filters. In: AAAI, pp. 1902–1910 (2016)

    Google Scholar 

  18. Ogden, H.E.: A sequential reduction method for inference in generalized linear mixed models. Electron. J. Stat. 9(1), 135–152 (2015)

    Article  MathSciNet  Google Scholar 

  19. Peyré, G.: Texture synthesis with grouplets. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 733–746 (2010)

    Article  Google Scholar 

  20. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. IJCV 40(1), 49–70 (2000)

    Article  Google Scholar 

  21. Raad, L., Davy, A., Desolneux, A., Morel, J.: A survey of exemplar-based texture synthesis. Ann. Math. Sci. Appl. 3, 89–148 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR (2014)

    Google Scholar 

  23. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.S.: Texture networks: Feed-forward synthesis of textures and stylized images. In: ICML, pp. 1349–1357 (2016)

    Google Scholar 

  24. Ustyuzhaninov, I., Brendel, W., Gatys, L.A., Bethge, M.: Texture synthesis using shallow convolutional networks with random filters. CoRR (2016)

    Google Scholar 

  25. van Wijk, J.J.: Spot noise texture synthesis for data visualization. In: SIGGRAPH, pp. 309–318 (1991)

    Google Scholar 

  26. Zhu, S.C., Wu, Y.N., Mumford, D.: Filters, random fields and maximum entropy (FRAME): towards a unified theory for texture modeling. IJCV 27(2), 107–126 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin De Bortoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Bortoli, V., Desolneux, A., Galerne, B., Leclaire, A. (2019). Macrocanonical Models for Texture Synthesis. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics