Skip to main content

Total Variation and Mean Curvature PDEs on the Space of Positions and Orientations

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

Total variation regularization and total variation flows (TVF) have been widely applied for image enhancement and denoising. To include a generic preservation of crossing curvilinear structures in TVF we lift images to the homogeneous space \(\mathbb {M}=\mathbb {R}^{d}\rtimes S^{d\!-\!1}\) of positions and orientations as a Lie group quotient in SE(d). For \(d=2\) this is called ‘total roto-translation variation’ by Chambolle & Pock. We extend this to \(d=3\), by a PDE-approach with a limiting procedure for which we prove convergence. We also include a Mean Curvature Flow (MCF) in our PDE model on \(\mathbb {M}\). This was first proposed for \(d=2\) by Citti et al. and we extend this to \(d=3\). Furthermore, for \(d=2\) we take advantage of locally optimal differential frames in invertible orientation scores (OS).

We apply our TVF and MCF in the denoising/enhancement of crossing fiber bundles in DW-MRI. In comparison to data-driven diffusions, we see a better preservation of bundle boundaries and angular sharpness in fiber orientation densities at crossings. We support this by error comparisons on a noisy DW-MRI phantom. We also apply our TVF and MCF in enhancement of crossing elongated structures in 2D images via OS, and compare the results to nonlinear diffusions (CED-OS) via OS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, Bikhäuser (2005)

    Google Scholar 

  2. Baspinar, E., Citti, G., Sarti, A.: A geometric model of multi-scale orientation preference maps via gabor functions. JMIV 60(6), 900–912 (2018)

    Article  MathSciNet  Google Scholar 

  3. Baspinar, E.: Minimal surfaces in Sub-Riemannian structures and functional geometry of the visual cortex. Ph.D. thesis, University of Bologna (2018)

    Google Scholar 

  4. Bekkers, E.: Retinal image analysis using Sub-Riemannian geometry in \(SE(2)\). Ph.D. thesis, TU/e Eindhoven (2017)

    Google Scholar 

  5. Bekkers, E., Duits, R., Mashatkov, A., Sanguinetti, G.: A PDE approach to data-driven Sub-Riemannian geodesics in \(SE(2)\). SIIMS 8(4), 2740–2770 (2015)

    Article  MathSciNet  Google Scholar 

  6. Boscain, U., Chertovskih, R., Gauthier, J.P., Prandi, D., Remizov, A.: Highly corrupted image inpainting by hypoelliptic diffusion. JMIV 60(8), 1231–1245 (2018)

    Article  Google Scholar 

  7. Brézis, H.: Operateurs maximeaux monotones et semi-gropes de contractions dans les espaces de Hilbert, vol. 50. North-Holland Publishing Co., Amsterdam (1973)

    Google Scholar 

  8. Chambolle, A., Pock, T.: Total roto-translation variation. arXiv:17009.099532v2, pp. 1–47, July 2018

  9. Citti, G., Franceschiello, B., Sanguinetti, G., Sarti, A.: Sub-riemannian mean curvature flow for image processing. SIIMS 9(1), 212–237 (2016)

    Article  MathSciNet  Google Scholar 

  10. Citti, G., Sarti, A.: A cortical based model of perceptional completion in the roto-translation space. JMIV 24(3), 307–326 (2006)

    Article  Google Scholar 

  11. Cohen, E., Deffieux, T., Demené, C., Cohen, L.D., Tanter, M.: 3D vessel extraction in the rat brain from ultrasensitive doppler images. In: Gefen, A., Weihs, D. (eds.) Computer Methods in Biomechanics and Biomedical Engineering. LNB, pp. 81–91. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59764-5_10

    Chapter  Google Scholar 

  12. Creusen, E.J., Duits, R., Florack, L., Vilanova, A.: Numerical schemes for linear and non-linear enhancement of DW-MRI. NM-TMA 6(3), 138–168 (2013)

    Article  MathSciNet  Google Scholar 

  13. Daducci, A., Caruyer, E., Descoteaux, M., Thiran, J.P.: HARDI Reconstruction Challenge (2013). Published at IEEE ISBI 2013

    Google Scholar 

  14. Duits, R.: Perceptual organization in image analysis. Ph.D. thesis, TU/e (2005)

    Google Scholar 

  15. Duits, R., Creusen, E., Ghosh, A., Dela Haije, T.: Morphological and linear scale spaces for fiber enhancement in DW-MRI. JMIV 46(3), 326–368 (2013)

    Article  MathSciNet  Google Scholar 

  16. Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on \({SE}(2)\) and contour enhancement via invertible orientation scores, part I: linear left-invariant diffusion equations on \({SE}(2)\). QAM-AMS 68, 255–292 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Duits, R., Janssen, M., Hannink, J., Sanguinetti, G.: Locally adaptive frames in the roto-translation group and their applications in medical image processing. JMIV 56(3), 367–402 (2016)

    Article  Google Scholar 

  18. Duits, R., Meesters, S., Mirebeau, J., Portegies, J.: Optimal paths for variants of the 2D and 3D reeds-shepp car with applications in image analysis. JMIV 60, 816–848 (2018)

    Article  MathSciNet  Google Scholar 

  19. Duits, R., St.-Onge, E., Portegies, J., Smets, B.: Total variation and mean curvature PDEs on \(\mathbb{R}^{d} {\rtimes }{s}^{d-1}\). Technical report https://arxiv.org/abs/1902.08145 (2019)

  20. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature. I. J. Differential Geom. 33(3), 635–681 (1991)

    Article  MathSciNet  Google Scholar 

  21. Felsberg, M., Forssen, P.E., Scharr, H.: Channel smoothing: efficient robust smoothing of low-level signal features. IEEE PAMI 28, 209–222 (2006)

    Article  Google Scholar 

  22. Franken, E.M., Duits, R.: Crossing preserving coherence-enhancing diffusion on invertible orientation scores. IJCV 85(3), 253–278 (2009)

    Article  Google Scholar 

  23. Giga, Y., Sato, M.H.: Generalized interface evolution with the Neumann boundary condition. Proc. Japan Acad. Ser. A Math. Sci. 67(8), 263–266 (1991)

    Article  MathSciNet  Google Scholar 

  24. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. CUP, Cambridge (2006)

    MATH  Google Scholar 

  25. Janssen, M.H.J., Janssen, A.J.E.M., Bekkers, E.J., Bescós, J.O., Duits, R.: Processing of invertible orientation scores of 3D images. JMIV 60(9), 1427–1458 (2018)

    Article  MathSciNet  Google Scholar 

  26. Martin, F., Bekkers, E., Duits, R.: Lie analysis package (2017). www.lieanalysis.nl/

  27. Meesters, S., et al.: Stability metrics for optic radiation tractography: towards damage prediction after resective surgery. J. Neurosci. Methods 288, 34–44 (2017)

    Article  Google Scholar 

  28. Portegies, J.M., Duits, R.: New exact and numerical solutions of the (convection-) diffusion kernels on SE(3). DGA 53, 182–219 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Portegies, J.M., Fick, R., Sanguinetti, G.R., Meesters, S.P.L., Girard, G., Duits, R.: Improving fiber alignment in HARDI by combining contextual PDE flow with constrained spherical deconvolution. PLoS ONE 10(10), e0138122 (2015)

    Article  Google Scholar 

  30. Portegies, J.: PDEs on the Lie Group SE(3) and their applications in diffusion-weighted MRI. Ph.D. thesis, Dep. Math. TU/e (2018)

    Google Scholar 

  31. Reisert, M., Burkhardt, H.: Efficient tensor voting with 3D tensorial harmonics. In: IEEE Conference on CVPRW 2008, pp. 1–7 (2008)

    Google Scholar 

  32. Sato, M.H.: Interface evolution with Neumann boundary condition. Adv. Math. Sci. Appl. 4(1), 249–264 (1994)

    MathSciNet  MATH  Google Scholar 

  33. Schmidt, M., Weickert, J.: Morphological counterparts of linear shift-invariant scale-spaces. J. Math. Imaging Vis. 56(2), 352–366 (2016)

    Article  MathSciNet  Google Scholar 

  34. Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)

    Article  Google Scholar 

  35. Vogt, T., Lellmann, J.: Measure-valued variational models with applications to diffusion-weighted imaging. JMIV 60(9), 1482–1502 (2018)

    Article  MathSciNet  Google Scholar 

  36. Weickert, J.A.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31(2/3), 111–127 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remco Duits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duits, R., St-Onge, E., Portegies, J., Smets, B. (2019). Total Variation and Mean Curvature PDEs on the Space of Positions and Orientations. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics