Skip to main content

A Simulation Tool for Kinematics Analysis of a Serial Robot

  • 1261 Accesses

Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Robot programming is a very significant task in the field of robotics. Off-line programming (OLP) is a method performed before robot manipulation. It is the manual editing of the robot code using computer software to simulate the real robotic scenarios. Task sequence planning, short-term production, flexibility during operation and expecting real behaviour of the robots are some of the reasons that make the users prefer OLP. Operations can be visualized in many processes such as welding, cutting, even medical applications. In this study, off-line models are offered including the forward and inverse kinematics of a six Degree-Of-Freedom (DOF) serial robot manipulator (Denso VP-6242G). Robotic Toolbox combined with GUI Development Environment in Matlab® is used for the forward kinematics solution. A Matlab® Simulink model with Simmechanics blocks is used in the inverse kinematic analysis. Visualization is enriched by 3D Solidworks® models of the robot parts. Basic motion examples that can be used in many areas are presented.

Keywords

  • Off-line programming (OLP)
  • Denso VP-6242G
  • Forward and inverse kinematics
  • Robotic toolbox

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-22365-6_59
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-22365-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

References

  1. Küçük, S., Bingül, Z.: An off-line simulation package for robotics education and industrial purposes. In: 11th IEEE International Conference on Methods and Models in Automation and Robotics, Poland (2005)

    Google Scholar 

  2. Küçük, S., Bingül, Z.: An off-line robot simulation toolbox. Comput. Appl. Eng. Educ. 18, 41–52 (2009)

    Google Scholar 

  3. Mitsi, S., Bouzakis, K.D., Mansour, G., Sagris, D., Maliaris, G.: Off-line programming of an industrial robot for manufacturing. Int. J. Adv. Manuf. Technol. 26(3), 262–267 (2004)

    CrossRef  Google Scholar 

  4. Neto, P., Mendes, N.: Direct off-line robot programming via a common CAD package. Robot. Auton. Syst. 61, 896–910 (2013)

    CrossRef  Google Scholar 

  5. Das, H., Bao, X., Bar-Cohen, Y., Bonitz, R., Lindemann, R., Maimone, M., Nesnas, I., Voorhees, C.: Robot manipulator technologies for planetary exploration. In: Proceedings of the Smart Structures and Integrated Systems Symposium, Newport Beach CA, March 1–5 (1999)

    Google Scholar 

  6. Corke, P.I.: A robotics toolbox for MATLAB. IEEE Robot. Autom. Mag. 3, 24–32 (1996)

    CrossRef  Google Scholar 

  7. Nethery, J.F., Spong, M.W.: Robotica: a mathematica package for robot analysis. IEEE Robot. Autom. Mag. 1, 113–120 (1994)

    CrossRef  Google Scholar 

  8. Hill, B., Tesar, D.: Rapid analysis manipulator program (RAMP) as a design tool for serial revolute robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 2896–2901 (1996)

    Google Scholar 

  9. Nayar, H.D.: Robotect: serial-link manipulator design software for modeling, visualization and performance analysis. In: 7th International Conference on Control, Automation, Robotics and Vision, Singapore (2002)

    Google Scholar 

  10. Zlajpah, L.: Integrated environment for modelling, simulation and control design for robotic manipulators. In: 3rd MATHMOD, IMACS Symposium on Mathematical Modelling, Vienna, Austria, pp. 761–764 (2000)

    Google Scholar 

  11. Bingul, Z., Koseeyaporn, P., Cook, G.E.: Windows based robot simulation tools. In: 7th International Conference on Control, Automation, Robotics and Vision, Singapore (2002)

    Google Scholar 

  12. Turnell, D.J., Turnell, Q.V., Fatima, M.D.E.: SimBot—a simulation tool for autonomous robots. In: IEEE International Conference on Systems Man, and Cybernetics, vol. 5, pp. 2986–2990 (2001)

    Google Scholar 

  13. Vollmann, K.: A new approach to robot simulation tools with parametric components. In: IEEE International Conference on Industrial Technology, vol. 2, pp. 881–885 (2002)

    Google Scholar 

  14. Cakir, M., Butun, E.: An educational tool for 6-DOF industrial robots with quaternion algebra. Comput. Appl. Eng. Educ. 15, 143–154 (2007)

    CrossRef  Google Scholar 

  15. Chinello, F., Scheggi, S., Mordibi, F., Prattichizzo, D.: The KUKA control toolbox: motion control of KUKA robot manipulators with MATLAB. IEEE Robot. Autom. Mag. 18, 69–79 (2011)

    CrossRef  Google Scholar 

  16. Tao, H., Minghong, W.: Research on the simulation of robotic motion based on Matlab. Int. J. Res. Eng. Sci. (IJRES) 5(9), 1–6 (2017)

    Google Scholar 

  17. Kütük, M.E., Dülger, L.C., Daş, M.T.: Forward and inverse kinematics analysis of Denso Robot. In: Proceedings of the International Symposium of Mechanism and Machine Science, AzcIftomm, 11–14 September 2017, Baku, Azerbaijan (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Erkan Kütük .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Erkan Kütük, M., Canan Dülger, L., Taylan Das, M. (2020). A Simulation Tool for Kinematics Analysis of a Serial Robot. In: , et al. Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-22365-6_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22365-6_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22364-9

  • Online ISBN: 978-3-030-22365-6

  • eBook Packages: EngineeringEngineering (R0)