Skip to main content

Survey on Intelligent Chatbots: State-of-the-Art and Future Research Directions

  • Conference paper
  • First Online:
Complex, Intelligent, and Software Intensive Systems (CISIS 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 993))

Included in the following conference series:

Abstract

Human-computer interaction (HCI) is an area of interest which plays a major role in understanding the interaction between humans and machines. Dialogue systems or conversational systems including chatbots, voice control interfaces and personal assistants are examples of HCI application that have been developed to interact with users using natural language. Chatbots can help customers find useful information for their needs. Thus, numerous organizations are using chatbots to automate their customer service. Thus, the needs for using artificial intelligence has been increasing due to the needs of automated services. However, devolving smart bots that can respond at the human level is challenging. In this paper, we survey the state-of-art chatbot approaches from based on the ability to generate appropriate responses perspective. After summarizing the review from this aspect, we identify the research issues and challenges in chatbots. The findings of this research will highlight directions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shawar, B.A., Atwell, E.: Different measurements metrics to evaluate a chatbot system. In: Proceedings of the Workshop on Bridging the Gap: Academic and Industrial Research in Dialog Technologies, Association for Computational Linguistics, pp. 89–96 (2007)

    Google Scholar 

  2. Sandbank, T., Shmueli-Scheuer, M., Herzig, J., Konopnicki, D., Richards, J., Piorkowski, D.: Detecting egregious conversations between customers and virtual agents. arXiv preprint arXiv:1711.05780 (2017)

  3. Wu, Y., Li, Z., Wu, W., Zhou, M.: Response selection with topic clues for retrieval-based chatbots. Neurocomputing 316, 251–261 (2018)

    Article  Google Scholar 

  4. Radziwill, N.M., Benton, M.C.: Evaluating quality of chatbots and intelligent conversational agents. arXiv preprint arXiv:1704.04579 (2017)

  5. de Haan, H., Snijder, J., van Nimwegen, C., Beun, R.J.: Chatbot personality and customer satisfaction (2018)

    Google Scholar 

  6. Mesnil, G., Dauphin, Y., Yao, K., Bengio, Y., Deng, L., Hakkani-Tur, D., He, X., Heck, L., Tur, G., Yu, D.: Using recurrent neural networks for slot filling in spoken language understanding. IEEE/ACM Trans. Audio Speech Lang. Process. 23(3), 530–539 (2015)

    Article  Google Scholar 

  7. Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., Jurafsky, D.: Deep reinforcement learning for dialogue generation. arXiv preprint arXiv:1606.01541 (2016)

  8. Ritter, A., Cherry, C., Dolan, B.: Unsupervised modeling of Twitter conversations. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 172–180. Association for Computational Linguistics (2010)

    Google Scholar 

  9. Langner, B., Vogel, S., Black, A.W.: Evaluating a dialog language generation system: comparing the mountain system to other NLG approaches. In: Eleventh Annual Conference of the International Speech Communication Association (2010)

    Google Scholar 

  10. Venkatesh, A., Khatri, C., Ram, A., Guo, F., Gabriel, R., Nagar, A., Prasad, R., Cheng, M., Hedayatnia, B., Metallinou, A., et al.: On evaluating and comparing conversational agents. arXiv preprint arXiv:1801.03625 4, 60–68 (2018)

  11. Weizenbaum, J.: ELIZA—a computer program for the study of natural language communication between man and machine. Commun. ACM 9(1), 36–45 (1966)

    Article  Google Scholar 

  12. Wallace, R.: The elements of AIML style. Alice AI Foundation (2003)

    Google Scholar 

  13. Carpenter, R.: Jabberwocky. Jabberwocky.com (1997–2006). www.jabberwocky.com. Accessed 16 May 2006

  14. Leuski, A., Traum, D.: NPCeditor: creating virtual human dialogue using information retrieval techniques. Ai Mag. 32(2), 42–56 (2011)

    Article  Google Scholar 

  15. Suárez-Serrato, P., Roberts, M.E., Davis, C., Menczer, F.: On the influence of social bots in online protests. In: International Conference on Social Informatics, pp. 269–278. Springer (2016)

    Google Scholar 

  16. Androutsopoulou, A., Karacapilidis, N., Loukis, E., Charalabidis, Y.: Transforming the communication between citizens and government through AI-guided chatbots. Gov. Inf. Quart. 36, 358–367 (2018)

    Article  Google Scholar 

  17. Goda, Y., Yamada, M., Matsukawa, H., Hata, K., Yasunami, S.: Conversation with a chatbot before an online EFL group discussion and the effects on critical thinking. J. Inf. Syst. Educ. 13(1), 1–7 (2014)

    Google Scholar 

  18. Kerly, A., Hall, P., Bull, S.: Bringing chatbots into education: towards natural language negotiation of open learner models. Knowl. Based Syst. 20(2), 177–185 (2007)

    Article  Google Scholar 

  19. Kerfoot, B.P., Baker, H., Jackson, T.L., Hulbert, W.C., Federman, D.D., Oates, R.D., DeWolf, W.C.: A multi-institutional randomized controlled trial of adjuvant Web-based teaching to medical students. Acad. Med. 81(3), 224–230 (2006)

    Article  Google Scholar 

  20. Shawar, B.A., Atwell, E.: Fostering language learner autonomy through adaptive conversation tutors. In: Proceedings of the The fourth Corpus Linguistics Conference

    Google Scholar 

  21. Forelle, M., Howard, P., Monroy-Hernández, A., Savage, S.: Political bots and the manipulation of public opinion in Venezuela. arXiv preprint arXiv:1507.07109 (2015)

  22. Yan, R., Song, Y., Wu, H.: Learning to respond with deep neural networks for retrieval-based human-computer conversation system. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 55–64. ACM (2016)

    Google Scholar 

  23. Henderson, M., Thomson, B., Young, S.: Deep neural network approach for the dialog state tracking challenge. In: Proceedings of the SIGDIAL 2013 Conference, pp. 467–471 (2013)

    Google Scholar 

  24. Chen, Y.N.: Unsupervised learning and modeling of knowledge and intent for spoken dialogue systems. In: Proceedings of the ACL-IJCNLP 2015 Student Research Workshop, pp. 1–7 (2015)

    Google Scholar 

  25. Roy, N., Pineau, J., Thrun, S.: Spoken dialogue management using probabilistic reasoning. In: Proceedings of the 38th Annual Meeting on Association for Computational Linguistics, pp. 93–100. Association for Computational Linguistics (2000)

    Google Scholar 

  26. Zhao, T., Lu, A., Lee, K., Eskenazi, M.: Generative encoder-decoder models for task-oriented spoken dialog systems with chatting capability. arXiv preprint arXiv:1706.08476 (2017)

  27. Eric, M., Manning, C.D.: A copy-augmented sequence-to-sequence architecture gives good performance on task-oriented dialogue. arXiv preprint arXiv:1701.04024 (2017)

  28. Wen, T.H., Vandyke, D., Mrksic, N., Gasic, M., Rojas-Barahona, L.M., Su, P.H., Ultes, S., Young, S.: A network-based end-to-end trainable task-oriented dialogue system. arXiv preprint arXiv:1604.04562 (2016)

  29. Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for matching natural language sentences. In: Advances in Neural Information Processing Systems, pp. 2042–2050 (2014)

    Google Scholar 

  30. Wang, M., Lu, Z., Li, H., Liu, Q.: Syntax-based deep matching of short texts. arXiv preprint arXiv:1503.02427 (2015)

  31. Banchs, R.E., Li, H.: IRIS: a chat-oriented dialogue system based on the vector space model. In: Proceedings of the ACL 2012 System Demonstrations, pp. 37–42. Association for Computational Linguistics (2012)

    Google Scholar 

  32. Ji, Z., Lu, Z., Li, H.: An information retrieval approach to short text conversation. arXiv preprint arXiv:1408.6988 (2014)

  33. Colby, K.M.: Modeling a paranoid mind. Behav. Brain Sci. 4(4), 515–534 (1981)

    Article  Google Scholar 

  34. Shang, L., Lu, Z., Li, H.: Neural responding machine for short-text conversation. arXiv preprint arXiv:1503.02364 (2015)

  35. Leuski, A., Patel, R., Traum, D., Kennedy, B.: Building effective question answering characters. In: Proceedings of the 7th SIGdial Workshop on Discourse and Dialogue, pp. 18–27. Association for Computational Linguistics (2009)

    Google Scholar 

  36. Lowe, R., Pow, N., Serban, I., Pineau, J.: The Ubuntu dialogue corpus: a large dataset for research in unstructured multi-turn dialogue systems. arXiv preprint arXiv:1506.08909 (2015)

  37. Thomas, N.: An e-business chatbot using AIML and LSA. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 2740–2742. IEEE (2016)

    Google Scholar 

  38. Rai, S., Raut, A., Savaliya, A., Shankarmani, R.: Darwin: convolutional neural network based intelligent health assistant. In: 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 1367–1371. IEEE (2018)

    Google Scholar 

  39. Knight, K., Hatzivassiloglou, V.: Two-level, many-paths generation. In: Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, pp. 252–260. Association for Computational Linguistics (1995)

    Google Scholar 

  40. Galley, M., Fosler-Lussier, E., Potamianos, A.: Hybrid natural language generation for spoken dialogue systems. In: Seventh European Conference on Speech Communication and Technology (2001)

    Google Scholar 

  41. Ritter, A., Cherry, C., Dolan, W.B.: Data-driven response generation in social media. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 583–593. Association for Computational Linguistics (2011)

    Google Scholar 

  42. Serban, I.V., Sordoni, A., Bengio, Y., Courville, A., Pineau, J.: Building end-to-end dialogue systems using generative hierarchical neural network models. In: 30th AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 3776–3783 (2016)

    Google Scholar 

  43. Vinyals, O., Le, Q.: A neural conversational model. arXiv preprint arXiv:1506.05869 (2015)

  44. Zhang, W.N., Zhu, Q., Wang, Y., Zhao, Y., Liu, T.: Neural personalized response generation as domain adaptation. World Wide Web, pp. 1–20 (2017)

    Google Scholar 

  45. Shang, L., Sakai, T., Lu, Z., Li, H., Higashinaka, R., Miyao, Y.: Overview of the NTCIR-12 short text conversation task. In: NTCIR (2016)

    Google Scholar 

  46. Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B.: A diversity-promoting objective function for neural conversation models. arXiv preprint arXiv:1510.03055 (2015)

  47. Engelbrech, K.P., Gödde, F., Hartard, F., Ketabdar, H., Möller, S.: Modeling user satisfaction with hidden markov model. In: Proceedings of the SIGDIAL 2009 Conference: the 10th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pp. 170–177. Association for Computational Linguistics (2009)

    Google Scholar 

  48. Ultes, S., Schmitt, A., Minker, W.: On quality ratings for spoken dialogue systems-experts vs. users. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 569–578 (2013)

    Google Scholar 

  49. Hone, K.S., Graham, R.: Towards a tool for the subjective assessment of speech system interfaces (SASSI). Nat. Lang. Eng. 6(3–4), 287–303 (2000)

    Article  Google Scholar 

  50. Möller, S.: Subjective quality evaluation of telephone services based on spoken dialogue systems. ITU-T Recommendation, p. 851 (2003)

    Google Scholar 

  51. Higashinaka, R., Minami, Y., Dohsaka, K., Meguro, T.: Issues in predicting user satisfaction transitions in dialogues: individual differences, evaluation criteria, and prediction models, pp. 48–60. Springer (2010a)

    Google Scholar 

  52. Higashinaka, R., Minami, Y., Dohsaka, K., Meguro, T.: Modeling user satisfaction transitions in dialogues from overall ratings. In: Proceedings of the 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pp. 18–27. Association for Computational Linguistics (2010b)

    Google Scholar 

  53. Schmitt, A., Schatz, B., Minker, W.: Modeling and predicting quality in spoken human-computer interaction. In: Proceedings of the SIGDIAL 2011 Conference, pp. 173–184. Association for Computational Linguistics (2011)

    Google Scholar 

  54. Hara, S., Kitaoka, N., Takeda, K.: Estimation method of user satisfaction using N-gram-based dialog history model for spoken dialog system. In: LREC (2010)

    Google Scholar 

  55. Schmitt, A., Schatz, B., Minker, W.: A statistical approach for estimating user satisfaction in spoken human-machine interaction. In: 2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp. 1–6. IEEE (2011b)

    Google Scholar 

  56. Martinez, F.F., Blázquez, J., Ferreiros, J., Barra, R., Macias-Guarasa, J., Lucas-Cuesta, J.M.: Evaluation of a spoken dialogue system for controlling a HiFi audio system. In: Spoken Language Technology Workshop 2008, SLT 2008 IEEE, pp. 137–140. IEEE (2008)

    Google Scholar 

  57. Machinery, C.: Computing machinery and intelligence-AM turing. Mind 59(236), 433 (1950)

    MathSciNet  Google Scholar 

  58. Liu, C.W., Lowe, R., Serban, I.V., Noseworthy, M., Charlin, L., Pineau, J.: How not to evaluate your dialogue system: an empirical study of unsupervised evaluation metrics for dialogue response generation. arXiv preprint arXiv:1603.08023 (2016)

  59. Yuwono, S.K., Biao, W., D’Haro, L.F.: Automated scoring of chatbot responses in conversational dialogue

    Google Scholar 

  60. Lowe, R., Noseworthy, M., Serban, I.V., Angelard-Gontier, N., Bengio, Y., Pineau, J.: Towards an automatic turing test: learning to evaluate dialogue responses. arXiv preprint arXiv:1708.07149 (2017)

  61. DeVault, D., Leuski, A., Sagae, K.: Toward learning and evaluation of dialogue policies with text examples. In: Proceedings of the SIGDIAL 2011 Conference, pp. 39–48. Association for Computational Linguistics (2011)

    Google Scholar 

  62. Gandhe, S., Traum, D.: A semi-automated evaluation metric for dialogue model coherence, pp. 217–225. Springer (2016)

    Google Scholar 

  63. Guo, F., Metallinou, A., Khatri, C., Raju, A., Venkatesh, A., Ram, A.: Topic-based evaluation for conversational bots. arXiv preprint arXiv:1801.03622 (2018)

  64. Yu, Z., Xu, Z., Black, A.W., Rudnicky, A.: Strategy and policy learning for non-task-oriented conversational systems. In: Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pp. 404–412 (2016)

    Google Scholar 

  65. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349 (2015)

  66. Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., Jurafsky, D.: Adversarial learning for neural dialogue generation. arXiv preprint arXiv:1701.06547 (2017)

  67. Chakrabarti, C., Luger, G.F.: Artificial conversations for customer service chatter bots: architecture, algorithms, and evaluation metrics. Expert Syst. Appl. 42(20), 6878–6897 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebtesam H. Almansor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almansor, E.H., Hussain, F.K. (2020). Survey on Intelligent Chatbots: State-of-the-Art and Future Research Directions. In: Barolli, L., Hussain, F., Ikeda, M. (eds) Complex, Intelligent, and Software Intensive Systems. CISIS 2019. Advances in Intelligent Systems and Computing, vol 993. Springer, Cham. https://doi.org/10.1007/978-3-030-22354-0_47

Download citation

Publish with us

Policies and ethics