Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11200))

Abstract

Software is increasingly embedded in a variety of physical contexts. This imposes new requirements on tools that support the design and analysis of systems. For instance, modeling embedded and cyber-physical systems needs to blend discrete mathematics, which is suitable for modeling digital components, with continuous mathematics, used for modeling physical components. This blending of continuous and discrete creates challenges that are absent when the discrete or the continuous setting are considered in isolation. We consider robustness, that is, the ability of an analysis of a model to cope with small amounts of imprecision in the model. Formally, we identify analyses with monotonic maps between complete lattices (a mathematical framework used for abstract interpretation and static analysis) and define robustness for monotonic maps between complete lattices of closed subsets of a metric space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This does not exclude the possibility of using imprecise (aka loose) specifications.

  2. 2.

    Representing a real with a float, as done in traditional numerical methods, means that the imprecision in computations is either ignored or is tracked manually.

References

  1. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

    Article  MathSciNet  Google Scholar 

  2. Asperti, A., Longo, G.: Categories, Types and Scructures: An Introduction to Category Theory for the Working Computer Scientist. MIT Press, Cambridge (1991)

    MATH  Google Scholar 

  3. Awodey, S.: Category Theory. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  4. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, New York (1990)

    MATH  Google Scholar 

  5. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Logic Comput. 2(4), 511–547 (1992)

    Article  MathSciNet  Google Scholar 

  6. Cuijpers, P.J.L., Reniers, M.A.: Topological (bi-) simulation. Electron. Notes Theor. Comput. Sci. 100, 49–64 (2004)

    Article  Google Scholar 

  7. Fränzle, M.: Analysis of hybrid systems: an ounce of realism can save an infinity of states. In: Flum, J., Rodriguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 126–139. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48168-0_10

    Chapter  Google Scholar 

  8. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: Encycloedia of mathematics and its applications. Continuous Lattices and Domains, vol. 93. Cambridge University Press, Cambridge (2003)

    Chapter  Google Scholar 

  9. Goebel, R., Sanfelice, R.G., Teel, A.: Hybrid dynamical systems. IEEE Control Syst. 29(2), 28–93 (2009)

    Article  MathSciNet  Google Scholar 

  10. Kelley, J.L.: General Topology. Springer, Berlin (1975)

    MATH  Google Scholar 

  11. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \({\delta }\)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15

    Chapter  Google Scholar 

  12. Larsen, K.G., Steffen, B., Weise, C.: Continuous modeling of real-time and hybrid systems: from concepts to tools. Int. J. Softw. Tools Technol. Transfer 1(1–2), 64–85 (1997)

    Article  Google Scholar 

  13. Moggi, E., Farjudian, A., Duracz, A., Taha, W.: Safe & robust reachability analysis of hybrid systems. Theor. Comput. Sci. 747C, 75–99 (2018). https://doi.org/10.1016/j.tcs.2018.06.020

    Article  MathSciNet  MATH  Google Scholar 

  14. Moore, R.E.: Interval Analysis. Prentice-Hall, New Jersey (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Moggi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moggi, E., Farjudian, A., Taha, W. (2019). System Analysis and Robustness. In: Margaria, T., Graf, S., Larsen, K. (eds) Models, Mindsets, Meta: The What, the How, and the Why Not?. Lecture Notes in Computer Science(), vol 11200. Springer, Cham. https://doi.org/10.1007/978-3-030-22348-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22348-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22347-2

  • Online ISBN: 978-3-030-22348-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics