Advertisement

Heuristic Planning for Rough Terrain Locomotion in Presence of External Disturbances and Variable Perception Quality

Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 132)

Abstract

The quality of visual feedback can vary significantly on a legged robot meant to traverse unknown and unstructured terrains. The map of the environment, acquired with online state-of-the-art algorithms, often degrades after a few steps, due to sensing inaccuracies, slippage and unexpected disturbances. If a locomotion algorithm is not designed to deal with this degradation, its planned trajectories might end-up to be inconsistent in reality. In this work, we propose a heuristic-based planning approach that enables a quadruped robot to successfully traverse a significantly rough terrain (e.g. stones up to 10 cm of diameter), in absence of visual feedback. When available, the approach allows also to leverage the visual feedback (e.g. to enhance the stepping strategy) in multiple ways, according to the quality of the 3D map. The proposed framework also includes reflexes, triggered in specific situations, and the possibility to estimate online an unknown time-varying disturbance and compensate for it. We demonstrate the effectiveness of the approach with experiments performed on our quadruped robot HyQ (85 kg), traversing different terrains, such as: ramps, rocks, bricks, pallets and stairs. We also demonstrate the capability to estimate and compensate for external disturbances by showing the robot walking up a ramp while pulling a cart attached to its back.

Notes

Acknowledgements

This work was supported by Istituto Italiano di Tecnologia (IIT), with additional funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 601116 as part of the ECHORD++ (The European Coordination Hub for Open Robotics Development) project under the experiment called HyQ-REAL.

References

  1. 1.
    Bretl, T., Lall, S.: Testing static equilibrium for legged robots. IEEE Trans. Robot. 24, 794–807 (2008)CrossRefGoogle Scholar
  2. 2.
    Pardo, D., Möller, L., Neunert, M., Winkler, A.W., Buchli, J.: Evaluating direct transcription and nonlinear optimization methods for robot motion planning. IEEE Robot. Autom. Lett. 1(2), 946–953 (2016)CrossRefGoogle Scholar
  3. 3.
    Mastalli, C., Focchi, M., Havoutis, I., Radulescu, A., Calinon, S., Buchli, J., Caldwell, D.G., Semini, D.G.: Trajectory and foothold optimization using low-dimensional models for rough terrain locomotion. In: IEEE International Conference on Robotics and Automation (ICRA) (2017)Google Scholar
  4. 4.
    Winkler, A.W., Bellicoso, C.D., Hutter, M., Buchli, J.: Gait and trajectory optimization for legged systems through phase-based end-effector parameterization. IEEE Robot. Autom. Lett. 1–1 (2018)Google Scholar
  5. 5.
    Aceituno-Cabezas, B., Mastalli, C., Hongkai, D., Focchi, M., Radulescu, A., Caldwell, D.G., Cappelletto, J., Grieco, J.C., Fernando-Lopez, G., Semini, C.: Simultaneous contact, gait and motion planning for robust multi-legged locomotion via mixed-integer convex optimization. IEEE Robot. Autom. Lett. 1–8 (2018)Google Scholar
  6. 6.
    Mastalli, C., Winkler, A.W., Havoutis, I., Caldwell, D. G., Semini, C.: On-line and on-board planning and perception for quadrupedal locomotion. In: IEEE International Conference on Technologies for Practical Robot Applications (TEPRA) (2015)Google Scholar
  7. 7.
    Dai, H., Tedrake, R.: Planning robust walking motion on uneven terrain via convex optimization. In: 2016 IEEE-RAS International Conference on Humanoid Robots (2016)Google Scholar
  8. 8.
    Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.: On Time Optimisation of Centroidal Momentum Dynamics. arXiv:1709.09265 (2017)
  9. 9.
    Stephens, B.J.: State estimation for force-controlled humanoid balance using simple models in the presence of modeling error. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3994–3999 (2011)Google Scholar
  10. 10.
    Englsberger, J., Mesesan, G., Ott, C.: Smooth trajectory generation and push-recovery based on divergent component of motion. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 4560–4567 (2017)Google Scholar
  11. 11.
    Rotella, N.: Estimation-based control for humanoid robots. Ph.D. thesis, University of Southern California (USC) (2018)Google Scholar
  12. 12.
    Bledt, G., Wensing, P.M., Kim, S.: Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the MIT cheetah. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4102–4109 (2017)Google Scholar
  13. 13.
    Wieber, P-B.: Trajectory free linear model predictive control for stable walking in the presence of strong perturbations trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: IEEE-RAS International Conference on Humanoid Robots (2006)Google Scholar
  14. 14.
    Park, H-W., Wensing, P., Kim, S.: Online planning for autonomous running jumps over obstacles in high-speed quadrupeds. In: Robotics: Science and Systems XI (2015)Google Scholar
  15. 15.
    Bellicoso, C.D., Gehring, C., Hwangbo, J., Fankhauser, P., Hutter, M.: Perception-less terrain adaptation through whole body control and hierarchical optimization. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 558–564 (2016)Google Scholar
  16. 16.
    Bellicoso, C.D., Jenelten, F., Fankhauser, P., Gehring, C., Hwangbo, J., Hutter, M.: Dynamic locomotion and whole-body control for quadrupedal robots. In: IEEE/RSJ Intenational Conference on Intelligent Robots and Systems (IROS), pp. 3359–3365 (2017)Google Scholar
  17. 17.
    Fankhauser, P., Bjelonic, M., Bellicoso, C.D., Miki, T., Hutter, M.: Robust rough-terrain locomotion with a quadrupedal robot. In: IEEE International Conference on Robotics and Automation (ICRA) (2018)Google Scholar
  18. 18.
    Fallon, M., Marion, P., Deits, R., Whelan, T., Antone, M., McDonald, J., Tedrake R.: Continuous humanoid locomotion over uneven terrain using stereo fusion. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 881–888 (2015)Google Scholar
  19. 19.
    Camurri, M., Fallon, M., Bazeille, S., Radulescu, A., Barasuol, V., Caldwell, D.G., Semini, C.: Probabilistic contact estimation and impact detection for state estimation of quadruped robots. IEEE Robot. Autom. Lett. 2, 1023–1030 (2017)CrossRefGoogle Scholar
  20. 20.
    Bloesch, M., Hutter, M., Hoepflinger, M.H., Gehring, C., David Remy, C., Siegwart, R.: State estimation for legged robots: consistent fusion of leg kinematics and IMU. MIT Press J. 8, 17–24 (2013)Google Scholar
  21. 21.
    Xinjilefu, X., Feng, S., Huang, W., Atkeson, C.G.: Decoupled state estimation for humanoids using full-body dynamics. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 195–201 (2014)Google Scholar
  22. 22.
    Nobili, S., Camurri, M., Barasuol, V., Focchi, M., Caldwell, D., Semini, C., Fallon, M.: Heterogeneous sensor fusion for accurate state estimation of dynamic legged robots. In: Robotics: Science and Systems XIII (2017)Google Scholar
  23. 23.
    Barasuol, V., Buchli, J., Semini, C., Frigerio, M., De Pieri, E.R., Caldwell, D.G.: A reactive controller framework for quadrupedal locomotion on challenging terrain. In: Proceedings—IEEE International Conference on Robotics and Automation, pp. 2554–2561 (2013)Google Scholar
  24. 24.
    Focchi, M., Barasuol, V., Frigerio, M., Caldwell, D.G., Semini, C.: Slip Detection and Recovery for Quadruped Robots. Springer Proceedings in Advanced Robotics, vol. 3, pp. 185–199. Cham (2018)Google Scholar
  25. 25.
    Barasuol, V., Camurri, M., Bazeille, S., Caldwell, D., Semini, C.: Reactive trotting with foot placement corrections through visual pattern classification. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2015)Google Scholar
  26. 26.
    Belter, D., Skrzypczyński, P.: Rough terrain mapping and classification for foothold selection in a walking robot. J. Field Robot. 28(4), 497–528 (2011)CrossRefGoogle Scholar
  27. 27.
    Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D.G., Semini, C.: Motion planning for quadrupedal locomotion: coupled planning, terrain mapping and whole-body control. HAL id: hal-01673438v2 (2018)Google Scholar
  28. 28.
    Focchi, M., Del Prete, A., Havoutis, I., Featherstone, R., Caldwell, D.G., Semini, C.: High-slope terrain locomotion for torque-controlled quadruped robots. Auton. Robots 41(1), 259–272 (2017)CrossRefGoogle Scholar
  29. 29.
    Focchi, M., Featherstone, R., Orsolino, R., Caldwell, D.G., Semini, C.: Viscosity-based height reflex for workspace augmentation for quadrupedal locomotion on rough terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017)Google Scholar
  30. 30.
    Focchi, M., Barasuol, V., Havoutis, I., Buchli, J., Semini, C., Caldwell, D.G.: Local reflex generation for obstacle negotiation in quadrupedal locomotion. In: International Conference on Climbing and Walking Robots (CLAWAR) (2013)Google Scholar
  31. 31.
    Semini, C., Tsagarakis, N., Guglielmino, E., Focchi, M., Cannella, F., Caldwel, D.: Design of HyQ—a hydraulically and electrically actuated quadruped robot. J. Syst. Control Eng. (2011)Google Scholar
  32. 32.
    Frigerio, M., Buchli, J., Caldwell, D.G., Semini, C.: RobCoGen: a code generator for efficient kinematics and dynamics of articulated robots, based on Domain Specific Languages 7(1), 36–54 (2016)Google Scholar
  33. 33.
    Tar, A.S., Cserey, G.G., Veres, J.: Patent N. WO 2013072712 A1, May 2014Google Scholar
  34. 34.
    Gao, Y., Semini, C., Focchi, M., Caldwell, D.G.: Patent N. IT 102018000002407, Feb 2018Google Scholar
  35. 35.
    Winkler, A., Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D.G., Semini, C.: Planning and execution of dynamic whole-body locomotion for a hydraulic quadruped on challenging terrain. In: IEEE International Conference on Robotics and Automation (ICRA) (2015)Google Scholar
  36. 36.
    Boaventura, T., Buchli, J., Semini, C., Caldwell, D.G.: Model-based hydraulic impedance control for dynamic robots. IEEE Trans. Robot. 31, 1324–1336 (2015)CrossRefGoogle Scholar
  37. 37.
    Orsolino, R., Focchi, M., Mastalli, C., Dai, H., Caldwell, D. G., Semini, C.: Application of wrench based feasibility analysis to the online trajectory optimization of legged robots. IEEE Robot. Autom. Lett. (RA-L) (2018)Google Scholar
  38. 38.
    Audren, H., Kheddar, A.: 3D robust stability polyhedron in multicontact. Submitted to IEEE Trans. Robot. (TRO) (2017)Google Scholar
  39. 39.
    Alexander, R.M.: Principles of Animal Locomotion. Princeton University Press (2003)Google Scholar
  40. 40.
    Semini, C., Tsagarakis, N.G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D.G.: Design of HyQ—a hydraulically and electrically actuated quadruped robot. IMechE Part I: J. Syst. Control Eng. 225(6), 831–849 (2011)Google Scholar
  41. 41.
    Camurri, M.: Multisensory State Estimation and Mapping on Dynamic Quadruperd Robots. Ph.D. thesis, Istituto Italiano di Tecnologia (IIT) and Universiy of Genoa. http://iit-dlslab.github.io/papers/camurri17phd.pdf (2017)
  42. 42.
    Fankhauser, P., Hutter, M.: a universal grid map library: implementation and use case for rough terrain navigation. In: Koubaa, A. (ed.) Robot Operating System (ROS)—The Complete Reference, vol. 1, ch. 5. Springer (2016)Google Scholar
  43. 43.
    Semini, C., Barasuol, V., Goldsmith, J., Frigerio, M., Focchi, M., Gao, Y., Caldwell, D.G.: Design of the hydraulically-actuated, torque-controlled quadruped robot HyQ2Max. IEEE/ASME Trans. Mechatron. PP(99), 1–1 (2016)Google Scholar
  44. 44.
    Gramkow, C.: On averaging rotations. J. Math. Imaging Vis. 15(1–2), 7–16 (2001)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Gehring, C., Coros, S., Hutler, M., Dario Bellicoso, C., Heijnen, H., Diethelm, R., Bloesch, M., Fankhauser, P., Hwangbo, J., Hoepflinger, M., Siegwart, R.: Practice makes perfect: an optimization-based approach to controlling agile motions for a quadruped robot. IEEE Robot. Autom. Mag. 23(1), 34–43 (2016)CrossRefGoogle Scholar
  46. 46.
    Oßwald, S., Gutmann, J.S., Hornung, A., Bennewitz, M.: From 3D point clouds to climbing stairs: a comparison of plane segmentation approaches for humanoids. In: 2011 11th IEEE-RAS International Conference on Humanoid Robots, pp. 93–98 (2011)Google Scholar
  47. 47.
    Pongas, D., Mistry, M., Schaal, S.: A robust quadruped walking gait for traversing rough terrain. In: Proceedings, 2007 IEEE International Conference on Robotics and Automation, pp. 1474–1479 (2007)Google Scholar
  48. 48.
    Tournois, G., Focchi, M., Del Prete, A., Orsolino, R., Caldwell, D.G., Semini, C.: Online payload identification for quadruped robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017)Google Scholar
  49. 49.
    Featherstone, R.: Rigid Body Dynamics Algorithms. Springer US, Boston, MA (2008)CrossRefGoogle Scholar
  50. 50.
    Orin, D.E., Goswami, A., Lee, S.-H.: Centroidal dynamics of a humanoid robot. Auton. Robots 35, 161–176 (2013)CrossRefGoogle Scholar
  51. 51.
    Popovic, M.B., Goswami, A., Herr, H.: Ground reference points in legged locomotion: definitions, biological trajectories and control implications. Int. J. Robot. Res. 24(12), 1013–1032 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dynamic Legged Systems LabIstituto Italiano di TecnologiaGenoaItaly
  2. 2.Oxford Robotics InstituteUniversity of OxfordOxfordUK
  3. 3.LAAS-CNRSToulouseFrance

Personalised recommendations