Skip to main content

Practical Issues in Studying Natural Vibroscape and Biotic Noise

  • Chapter
  • First Online:
Biotremology: Studying Vibrational Behavior

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 6))

Abstract

In nature, vibrational communication takes place in an ecological context and in a complex vibrational environment that can be a major driver of evolution. Vibroscape is a collection of biological, geophysical and anthropogenic vibrations emanating from a given landscape to create unique vibrational patterns across a variety of spatial and temporal scales. Here, we discuss basic concepts and propose some basic terminology in this field of research. Vibroscape is virtually unexplored so far and we also provide some guidelines on how to approach fieldwork associated with vibroscape studies, as well as analyses of recordings obtained in the field. Vibroscape research is still facing technical challenges; however, we urge further studies in this area in order to provide much needed information on natural vibrational communities and sources of biotic, as well as anthropogenic vibratory noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abt I, Derlink M, Mabon R, Virant-Doberlet M, Jacquot E (2018) Integrating multiple criteria for the characterization of Psammotettix populations in European cereal fields. Bull Entomol Res 108:185–202

    CAS  PubMed  Google Scholar 

  • Arnason BT, Hart LA, O’Connell-Rodwell CE (2002) The properties of geophysical fields and their effects in elephants and other animals. J Comp Psychol 116:123–132

    PubMed  Google Scholar 

  • Barth FG (1998) The vibrational sense in spiders. In: Hoy RR, Popper AN, Pay R (eds) Comparative hearing: insects. Springer, New York, pp 228–278

    Google Scholar 

  • Barth FG, Bleckmann H, Bohnenberger J, Seyfarth EA (1988) Spiders of the genus Cupiennius Simon 1981 (Araneae, Ctenidae). II. On the vibratory environment of a wandering spider. Oecologia 767:194–201

    Google Scholar 

  • Caldwell MS (2014) Interactions between airborne sound and substrate vibration in animal communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 65–92

    Google Scholar 

  • Cocroft RB (2003) The social environment of an aggregating, ant-attended treehopper (Hemiptera: Membracidae: Vanduzea arquata). J Insect Behav 16:79–95

    Google Scholar 

  • Cocroft RB, Hamel JA (2010) Vibrational communication in the “other insect societies”: a diversity of ecology signals and signal functions. In: O’Connell-Rodwell CE (ed) The use of vibrations in communication: properties, mechanisms and function across taxa. Research Outpost, Kerala, pp 47–68

    Google Scholar 

  • Cocroft RB, McNett GD (2006) Vibratory communication in treehoppers (Hemiptera: Membracidae). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, FL, pp 305–317

    Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioural ecology of insect vibrational communication. BioScience 55:323–334

    Google Scholar 

  • Cocroft RB, Gogala M, Hill PSM, Wessel A (2014) Fostering research progress in a rapidly growing field. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 3–12

    Google Scholar 

  • Čokl A (2008) Stink bug interaction with host plants during communication. J Insect Physiol 54:1113–1124

    PubMed  Google Scholar 

  • Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50

    PubMed  Google Scholar 

  • de Groot M, Čokl A, Virant-Doberlet M (2011) Species identity cues: possibilities for errors during vibrational communication on plant stems. Behav Ecol 22:1209–1217

    Google Scholar 

  • de Vrijer PWF (1984) Variability in calling signals of the planthopper Javesella pellucida (F.) (Homoptera: Delphacidae) in relation to temperature, and consequences for species recognition during distant communication. Neth J Zool 34:388–406

    Google Scholar 

  • Depraetere M, Pavoine S, Jiguet F, Gasc A, Duvail S, Sueur J (2012) Monitoring animal diversity using acoustic indices: implementation in a temperate woodland. Ecol Indic 13:46–56

    Google Scholar 

  • Derlink M, Pavlovčič P, Stewart AJA, Virant-Doberlet M (2014) Mate recognition in duetting species: the role of male and female vibrational signals. Anim Behav 90:181–193

    Google Scholar 

  • Derlink M, Abt I, Mabon R, Julian C, Virant-Doberlet M, Jacquot E (2018) Mating behaviour of Psammotettix alienus (Hemiptera: Cicadellidae). Insect Sci 25:148–160

    PubMed  Google Scholar 

  • Desjonquères C, Rybak F, Depraetere M, Gasc A, Le Viol I, Pavoine S, Sueur J (2015) First description of underwater acoustic diversity in three temperate ponds. PeerJ 3:e1393. https://doi.org/10.7717/peerj.1393

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumyahn SL, Pijanowski BC (2011) Soundscape conservation. Landsc Ecol 26:1327–1344

    Google Scholar 

  • Erbe C, Verma A, McCauley R, Gavrilov A, Parnum I (2015) The marine soundscape of Perth Canyon. Prog Oceanogr 137:38–51

    Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PLoS One 6(5):e19692. https://doi.org/10.1371/journal.pone.0019692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farina A (2014) Soundscape ecology: principles, patterns, methods and applications. Springer, Heidelberg

    Google Scholar 

  • Farina A, Gage SH (2017) Ecoacoustics: a new science. In: Farina A, Gage SH (eds) Ecoacoustics: the ecological role of sounds. Wiley, Hoboken, pp 1–11

    Google Scholar 

  • Farina A, James P (2016) The acoustic communities: definition, description and ecological role. BioSystems 147:11–20

    PubMed  Google Scholar 

  • Farina A, Pierretti N, Piciolli L (2011) The soundscape methodology for long-term bird monitoring: a Mediterranean Europe case study. Ecol Inform 6:354–363

    Google Scholar 

  • Forrest TG (1994) From sender to receiver: propagation and environmental effects on acoustic signals. Am Zool 34:644–654

    Google Scholar 

  • Fowler-Finn KD, Cruz DC, Rodríguez RL (2017) Local population density and group composition influence the signal-preference relationship in Enchenopa treehoppers (Hemiptera: Membracidae). Evol Biol 30:13–25

    CAS  Google Scholar 

  • Gage SH, Axel AC (2014) Visualization of temporal change in soundscape power of a Michigan lake habitat over a 4-year period. Ecol Inform 21:100–109

    Google Scholar 

  • Gage SH, Joo W (2017) Urban acoustics. In: Farina A, Gage SH (eds) Ecoacoustics: the ecological role of sounds. Wiley, Hoboken, pp 259–272

    Google Scholar 

  • Gage SH, Towsey M, Kasten EP (2017) Analytical methods in ecoacoustics. In: Farina A, Gage SH (eds) Ecoacoustics: the ecological role of sounds. Wiley, Hoboken, pp 273–296

    Google Scholar 

  • Gasc A, Sueur J, Jiguet F, Devictor V, Grandcolas P, Burrow C, Depraetere M, Pavoine S (2013a) Assessing biodiversity with sound: do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities. Ecol Indic 25:279–287

    Google Scholar 

  • Gasc A, Sueur J, Pavoine S, Pellens R, Grandcolas P (2013b) Biodiversity sampling using global acoustic approach: contrasting sites with microendemic in New Caledonia. PLoS One 8(5):e65311. https://doi.org/10.1371/journal.pone.0065311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasc A, Pavoine S, Lellouch L, Grandcolas P, Sueur J (2015) Acoustic indices for biodiversity assessments: analyses of bias based on simulated bird assemblages and recommendations for field surveys. Biol Conserv 191:306–312

    Google Scholar 

  • Gordon SD, Uetz GW (2012) Environmental interference: impact of acoustic noise on seismic communication and mating success. Behav Ecol 23:707–714

    Google Scholar 

  • Gracewski SM, Ramoutar ND (2013) Vibration measurement. In: Kutz M (ed) Handbook of measurement in science and engineering. Wiley, Hoboken, NJ, pp 367–481

    Google Scholar 

  • Greenfield MD (2015) Signal interactions and interference in insect choruses: singing and listening in the social environment. J Comp Physiol A 201:143–154

    Google Scholar 

  • Halfwerk W, Ryan MJ, Wilson PS (2016) Wind- and rain-induced vibrations impose different selection pressures on multimodal signalling. Am Nat 188:279–288

    PubMed  Google Scholar 

  • Harris SA, Shears NT, Radford CA (2016) Ecoacoustic indices as proxies for biodiversity on temperate reefs. Methods Ecol Evol 7:713–724

    Google Scholar 

  • Haver SM, Klinck H, Nieukirk SL, Matsumoto H, Dziak RP, Miksis-Olds JL (2017) The not-so-silent world: measuring Arctic, Equatorial, and Antarctic soundscapes in the Atlantic Ocean. Deep Sea Res Part I 122:95–104

    Google Scholar 

  • Henry CS, Brooks SJ, Duelli P, Johnson JB, Wells MM, Mochizuki A (2013) Obligatory duetting behaviour in the Chrysoperla carnea-group of cryptic species (Neuroptera: Chrysopidae): its role in shaping evolutionary history. Biol Rev 88:787–808

    PubMed  Google Scholar 

  • Hill PSM, Shadley JR (2001) Talking back: sending soil vibration signals to lekking prairie mole cricket males. Am Zool 41:1200–1214

    Google Scholar 

  • Hill PSM, Wessel A (2016) Biotremology. Curr Biol 26:R181–R191

    Google Scholar 

  • Ichikawa T (1982) Density-related changes in male-male competitive behavior in the rice brown planthopper Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Appl Entomol Zool 17:439–452

    Google Scholar 

  • Jain M, Diwakar S, Bahuleyan J, Deb R, Balakrishnan R (2014) A rain forest dusk chorus: cacophony or sounds of silence. Evol Ecol 28:1–22

    Google Scholar 

  • Joo W, Gage SH, Kasten EP (2011) Analysis and interpretation of variability in soundscapes along an urban-rural gradient. Landsc Urban Plan 103:259–276

    Google Scholar 

  • Kavčič A, Čokl A, Laumann RA, Blassioli-Moraes MC, Borges M (2013) Tremulatory and abdomen vibration signals enable communication through air in the stink bug Euschistus heros. PLoS One 8(2):e56503. https://doi.org/10.1371/journal.pone.0056503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korinšek G, Derlink M, Virant-Doberlet M, Tuma T (2016) An autonomous system of detecting and attracting leafhopper males using species- and sex-specific substrate borne vibrational signals. Comput Electron Agric 123:29–39

    Google Scholar 

  • Krause B, Farina A (2016) Using acoustic methods to survey the impacts of climate change on biodiversity. Biol Conserv 195:245–254

    Google Scholar 

  • Kuhelj A, Virant-Doberlet M (2017) Male-male interactions and male mating success in the leafhopper Aphrodes makarovi. Ethology 123:425–433

    Google Scholar 

  • Kuhelj A, de Groot M, Pajk F, Simčič T, Virant-Doberlet M (2015) Energetic cost of vibrational signalling in a leafhopper. Behav Ecol Sociobiol 69:815–828

    Google Scholar 

  • Lellouch L, Pavoine S, Jiguet F, Glotin Hm Sueur J (2014) Monitoring temporal change of bird communities with dissimilarity acoustic indices. Methods Ecol Evol 5:495–505

    Google Scholar 

  • Lewis ER, Naris PM, Jarvis JUM, Bronner G, Mason MJ (2006) Preliminary evidence for the use of microseismic cues for navigation by the Namib golden mole. J Acoust Soc Am 119:1260–1268

    PubMed  Google Scholar 

  • Lohrey AK, Clark DL, Gordon SD, Uetz GW (2009) Antipredator responses of wolf spiders (Araneae: Lycosidae) to sensory cues representing an avian predator. Anim Behav 77:813–821

    Google Scholar 

  • Machado RB, Aguiar L, Jones G (2017) Do acoustic indices reflect the characteristics of bird communities in the savannas of Central Brazil? Landsc Urban Plan 162:36–43

    Google Scholar 

  • Mankin RW, Brandhorst-Hubbard J, Flanders KL, Zhang M, Crocker RL, Lapointe SL, McCoy SW, Fisher JR, Weaver DK (2000) Eavesdropping on insects hidden in soil and interior structures of plants. J Econ Entomol 93(4):1173–1182

    CAS  PubMed  Google Scholar 

  • Mazzoni V, Prešern J, Lucchi A, Virant-Doberlet M (2009) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99:401–413

    PubMed  Google Scholar 

  • Mazzoni V, Lucchi A, Ioriatti C, Virant-Doberlet M, Anfora G (2010) Mating behavior of Hyalesthes obsoletus (Hemiptera: Cixidae). Ann Entomol Soc Am 103:813–822

    Google Scholar 

  • Mazzoni V, Anfora G, Virant-Doberlet M (2013) Substrate vibrations during courtship in three Drosophila species. PLoS One 8(11):e80708. https://doi.org/10.1371/journal.pone.0080708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzoni V, Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M (2014) Active space and the role of amplitude in plant-borne vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 125–145

    Google Scholar 

  • McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaller and receiver behaviour in vibrational communication. Behav Ecol Sociobiol 64:2043–2051

    Google Scholar 

  • Merchan CI, Diaz-Balteiro L, Soliño M (2014) Noise pollution in national parks: Soundscape and economic valuation. Landsc Urban Plan 123:1–9

    Google Scholar 

  • Michelsen A, Flemming F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Google Scholar 

  • Mitra O, Callaham MA, Smith ML, Yack JE (2009) Grunting for worms: seismic vibrations cause Diplocardia earthworms to emerge from soil. Biol Lett 5:16–19

    CAS  PubMed  Google Scholar 

  • Mullet TC, Gage SH, Morton JM, Huettmann F (2016) Temporal and spectral variation of a winter landscape in south-central Alaska. Landsc Ecol 31:1117–1137

    Google Scholar 

  • Mullet TC, Farina A, Gage SH (2017) The acoustic habitat hypothesis: an ecoacoustics perspective on species habitat selection. Biosemiotics 10:319–336

    Google Scholar 

  • Narins PM, Stoeger AS, O’Connel-Rodwell C (2016) Infrasonic and seismic communication in the vertebrates with special emphasis on the Afroteria: an update and future directions. In: Suthers RA, Fitch WT, Fay RR, Popper AN (eds) Vertebrate sound production and acoustic communication. Springer, Heidelberg, pp 191–227

    Google Scholar 

  • Nedelec SL, Campbell J, Radford AN, Simpson SD, Merchant ND (2016) Particle motion: the missing link in underwater acoustic ecology. Methods Ecol Evol 7:836–842

    Google Scholar 

  • Norton MP, Karczub DG (2003) Fundamentals of noise and vibration analysis for engineers, 2nd edn. Cambridge University Press, Cambridge, NY, pp 259–260

    Google Scholar 

  • O’Connell-Rodwell CE, Arnason BT, Hart LA (2000) Seismic properties of Asian elephant (Elephas maximus) vocalizations and locomotion. J Acoust Soc Am 108:3066–3072

    PubMed  Google Scholar 

  • O’Connell-Rodwell CE, Wood JD, Rodwell TC, Puria S, Partan SR, Keefe R, Shirver D, Arnason BT, Hart LA (2006) Wild elephant (Loxodonta africana) breeding herd respond to artificially transmitted seismic stimuli. Behav Ecol Sociobiol 59:842–850

    Google Scholar 

  • Oberst S, Bann G, Lai JCS, Evan TA (2017) Cryptic termites avoid predatory ants by eavesdropping on vibrational cues from their footsteps. Ecol Lett 20:212–221

    PubMed  Google Scholar 

  • Obrist MK, Pavan G, Sueur J, Riede K, Llusia D, Márquez R (2010) Bioacoustics approaches in biodiversity inventories. In: Eymann J, Degreef J, Häuser C, Monje JC, Samyn Y, VandenSpiegel D (eds) Manual on field recording techniques and protocols for all taxa biodiversity inventories. ABC Taxa. http://www.abctaxa.be/volumes/volume-8-manual-atbi/volumes/volume-8-manual-atbi/chapter-5/Chapter_5.pdf

  • Percy DM, Taylor GS, Kennedy M (2006) Psyllid communication: acoustic diversity, mate recognition and phylogenetic signal. Invertebr Syst 20:431–445

    Google Scholar 

  • Pieretti N, Farina A (2013) Application of a recently introduced index for acoustic complexity to an avian soundscape with traffic noise. J Acoust Soc Am 134:891–900

    PubMed  Google Scholar 

  • Pieretti N, Duarte MHL, Sousa-Lima RS, Rodrigues M, Young RJ, Farina A (2015) Determining temporal sampling schemes for passive acoustic studies in different tropical ecosystems. Trop Conserv Sci 8:215–234

    Google Scholar 

  • Pijanowski BC, Farina A, Gage SH, Dumyahn SJ, Krause BL (2011a) What is soundscape ecology? An introduction and overview of an emerging new science. Landsc Ecol 26:1213–1232

    Google Scholar 

  • Pijanowski BC, Villanueva-Rivera LJ, Dumyahn SL, Farina A, Krause BL, Napoletano BM, Gage SH, Pieretti N (2011b) Soundscape ecology: the science of sound and landscape. BioScience 61:203–216

    Google Scholar 

  • Polajnar J, Svenšek D, Čokl A (2012) Resonance in herbaceous plant stems as a factor in vibrational communication of pentatomid bugs (Heteroptera: Pentatomidae). J R Soc Interface 9:1898–1907

    PubMed  PubMed Central  Google Scholar 

  • Rankin L, Axel AC (2017) Biodiversity assessment in tropical biomes using ecoacoustics: linking soundscape to forest structure in a human-dominated tropical dry forest in southern Madagascar. In: Farina A, Gage SH (eds) Ecoacoustics: the ecological role of sounds. Wiley, Oxford, pp 129–144

    Google Scholar 

  • Riede K (1998) Acoustic monitoring of Orthoptera and its potential for conservation. J Insect Conserv 2:217–223

    Google Scholar 

  • Roberts L, Elliott MJ (2017) Good or bad vibrations? Impacts of anthropogemic vibration on the marine epibenthos. Sci Total Environ 595:255–268

    CAS  PubMed  Google Scholar 

  • Roberts L, Cheesman S, Elliott M, Breithaupt T (2016) Sensitivity of Pagurus bernhardus (L.) to substrate-borne vibration and anthropogenic noise. J Exp Mar Biol Ecol 474:185–194

    Google Scholar 

  • Roca IT, Proulx R (2016) Acoustic assessment of species richness and assembly rules in ensiferan communities from temperate ecosystems. Ecology 97:116–123

    PubMed  Google Scholar 

  • Rodriguez A, Gasc A, Pavoine S, Grandcolas P, Gaucher P, Sueur J (2014) Temporal and spatial variability of animal sound within a neotropical forest. Ecol Inform 21:133–143

    Google Scholar 

  • Römer H (1993) Environmental and biological constraints for the evolution of long-range signalling and hearing in acoustic insects. Philos Trans R Soc Lond B 340:179–185

    Google Scholar 

  • Rossi T, Connel SD, Nagelkerken I (2016) Silent oceans: ocean acidification impoverishes natural soundscapes by altering sound production of the world’s noisiest marine invertebrate. Proc R Soc B 283:20153046

    PubMed  PubMed Central  Google Scholar 

  • Ruppé L, Clément G, Herrel A, Ballesta L, Décamps T, Kéver L, Parmentier E (2015) Environmental constraints drive the partitioning of the soundscape in fishes. Proc Natl Acad Sci U S A 112:6092–6097

    PubMed  PubMed Central  Google Scholar 

  • Scheffer C, Girdhar P (2004) Practical machinery vibration analysis and predictive maintenance. Newnes, Burlington, MA, pp 31–34

    Google Scholar 

  • Schmidt AKD, Balakrishnan R (2015) Ecology of acoustic signalling and the problem of masking interference in insects. J Comp Physiol A 201:133–142

    Google Scholar 

  • Schöner MG, Simon R, Schöner CR (2016) Acoustic communication in plant-animal interactions. Curr Opin Plant Biol 32:88–95

    PubMed  Google Scholar 

  • Servick K (2014) Eavesdropping on ecosystems. Science 343:834–837

    CAS  PubMed  Google Scholar 

  • Shier DM, Lea AJ, Owen MA (2012) Beyond masking: Endangered Stephen’s kangaroo rats respond to traffic noise with footdrumming. Biol Conserv 150:53–58

    Google Scholar 

  • Soulier-Perkins A, Ouvrard D, Hoch H, Bourgoin T (2015) Singing in the Namoroka Caves, first record in situ for a cave dwelling insect Typhlobrixia namorokensis (Hemiptera, Fulgomorpha, Cixiidae). J Insect Behav 28:704–721

    Google Scholar 

  • Stewart KW, Sandberg JB (2006) Vibratory communication and mate searching behaviour in stoneflies. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, FL, pp 179–186

    Google Scholar 

  • Sueur J, Farina A (2015) Ecoacoustics: the ecological investigation and interpretation of environmental sound. Biosemiotics 8:493–502

    Google Scholar 

  • Sueur J, Farina A, Gasc A, Pieretti N, Pavoine S (2014) Acoustic indices for biodiversity assessment and landscape investigation. Acta Acust United Acustica 100:772–781

    Google Scholar 

  • Tishechkin DY (2007) Background noises in vibratory communication channels of Homoptera (Cicadinea and Psyllinea). Russ Entomol J 16:39–46

    Google Scholar 

  • Tishechkin DY (2011) Do different species of grass-dwelling small Auchenorrhyncha (Homoptera) have private vibrational communication channels? Russ Entomol J 20:135–139

    Google Scholar 

  • Tishechkin DY (2014) The use of bioacoustics characters for distinguishing between cryptic species in insects: potential, restrictions and prospects. Entomol Rev 94:289–309

    Google Scholar 

  • Towsey M, Wimmer J, Williamson I, Roe P (2014) The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecol Inform 21:110–119

    Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Google Scholar 

  • Virant-Doberlet M, Mazzoni V, de Groot M, Polajnar J, Lucchi A, Symondson WOC, Čokl A (2014) Vibrational communication networks: Eavesdropping and biotic noise. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 93–123

    Google Scholar 

  • Wimmer J, Towsey M, Planitz B, Williamson I, Roe P (2013) Analysing environmental acoustic data through collaboration and automation. Future Gener Comput Syst 29:560–568

    Google Scholar 

  • Young SS (2001) Computerized data acquisition and analysis for the life sciences. Cambridge University Press, Cambridge, p 66

    Google Scholar 

  • Zorović M, Čokl A (2015) Laser vibrometry as a diagnostic tool for detecting wood-boring beetle larvae. J Pest Sci 88:107–112

    Google Scholar 

Download references

Acknowledgements

Our sincere thanks go to the students Behare Rexhepi, Aljaž Kotar and Juan José López Díez who shared with us the burden of heavy equipment and long days and nights in the field, as well as long hours of listening to the recordings. The ongoing vibroscape study received financial support from the Slovenian Research Agency (research core funding no. P1-0255, research project J1-8142 and PhD fellowship awarded to RŠ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rok Šturm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Šturm, R., Polajnar, J., Virant-Doberlet, M. (2019). Practical Issues in Studying Natural Vibroscape and Biotic Noise. In: Hill, P., Lakes-Harlan, R., Mazzoni, V., Narins, P., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Studying Vibrational Behavior . Animal Signals and Communication, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-22293-2_8

Download citation

Publish with us

Policies and ethics