Advertisement

Preventing Security and Privacy Attacks in WBANs

  • Avani Vyas
  • Sujata PalEmail author
Chapter
  • 252 Downloads

Abstract

Sensors and radio channels have made remote health monitoring easier with the use of wireless body area networks (WBANs). WBANs use bio-sensors, implanted on/inside the human body, to collect real-time health readings. These sensors collect data wirelessly and then send it to medical server via wireless communication channels. Human health readings are of great importance and wireless channels are not always secure. This makes security and privacy disquiet in WBANs. Sensor nodes are the most common target of an intruder in WBANs. Intruder can also attack the communication channels and medical server of WBANs. Therefore, WBAN needs prevention while sending sensed information to the health care monitoring system. We also need to maintain confidentiality while transmitting the data to the server. In this chapter, we discuss various types of possible attacks in WBANs and summarized different lightweighted security methods proposed for resource constraint WBANs. We thoroughly explained how channel characteristics and human body features could be exploited to identify intruder in WBANs without using complex encryption. Additionally, the chapter briefly review methods for generating symmetric keys and exchanging messages over insecure channels in cloud assisted WBANs.

Keywords

Security and privacy Link fingerprints Attacks Encryption methods Secure key exchange methods 

References

  1. 1.
    Adat, V., & Gupta, B. (2018). Security in internet of things: Issues, challenges, taxonomy, and architecture. Telecommunication Systems, 67(3), 423–441.Google Scholar
  2. 2.
    Ali, S. T., Sivaraman, V., Ostry, D., Tsudik, G., & Jha, S. (2014). Securing first-hop data provenance for bodyworn devices using wireless link fingerprints. IEEE Transactions on Information Forensics and Security, 9(12), 2193–2204.CrossRefGoogle Scholar
  3. 3.
    Al-Janabi, S., Al-Shourbaji, I., Shojafar, M., & Shamshirband, S. (2017). Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egyptian Informatics Journal, 18(2), 113–122.CrossRefGoogle Scholar
  4. 4.
    Athanasiou, G., Fengou, M. A., Beis, A., & Lymberopoulos, D. (2015). A trust assessment mechanism for ubiquitous healthcare environment employing cloud theory. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1405–1408). Piscataway: IEEE.CrossRefGoogle Scholar
  5. 5.
    Barker, E., Johnson, D., & Smid, M. (2006). Recommendation for pair-wise key establishment schemes using discrete logarithm cryptography. National Institute of Standards and Technology.Google Scholar
  6. 6.
    Boukerche, A., & Ren, Y. (2009). A secure mobile healthcare system using trust-based multicast scheme. IEEE Journal on Selected Areas in Communications, 27(4), 387–399.CrossRefGoogle Scholar
  7. 7.
    Chen, C. L., Yang, T. T., & Shih, T. F. (2014). A secure medical data exchange protocol based on cloud environment. Journal of Medical Systems, 38(9), 112.CrossRefGoogle Scholar
  8. 8.
    Dautov, R., & Tsouri, G. R. (2016). Securing while sampling in wireless body area networks with application to electrocardiography. IEEE Journal of Biomedical and Health Informatics, 20(1), 135–142.CrossRefGoogle Scholar
  9. 9.
    Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ekeland, I. (1998). What is chaos theory? Review (Fernand Braudel Center), 21(2), 137–150. http://www.jstor.org/stable/40241422 Google Scholar
  11. 11.
    Finkle, J. (2016). J&J warns diabetic patients: Insulin pump vulnerable to hacking. Reuters Published October 4Google Scholar
  12. 12.
    Gao, Y., & Liu, W. (2015). A security routing model based on trust for medical sensor networks. In IEEE International Conference on Communication Software and Networks (ICCSN) (pp. 405–408). Piscataway: IEEE.Google Scholar
  13. 13.
    Goode, L. (2013). Comparing wearables: Fitbit flex vs. jawbone up and more. http://allthingsd.com/20130715/fitbit-flex-vs-jawbone-up-and-more-a-wearables-comparison/
  14. 14.
    Goode, L. (2018). Apple watch’s update adds heart-monitoring capabilities. https://www.wired.com/story/apple-watch-series-4/ Google Scholar
  15. 15.
    Gupta, B. B. (2018). Computer and cyber security: Principles, Algorithm, applications, and perspectives. Boca Raton: CRC Press.Google Scholar
  16. 16.
    Halperin, D., Heydt-Benjamin, T. S., Ransford, B., Clark, S. S., Defend, B., Morgan, W., et al. (2008). Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In IEEE Symposium on Security and Privacy, SP 2008 (pp. 129–142). Piscataway: IEEE.CrossRefGoogle Scholar
  17. 17.
    Hossain, M. S., Muhammad, G., Abdul, W., Song, B., & Gupta, B. (2018). Cloud-assisted secure video transmission and sharing framework for smart cities. Future Generation Computer Systems, 83, 596–606.CrossRefGoogle Scholar
  18. 18.
    Jakes, W. C., & Cox, D. C. (1994). Microwave mobile communications. Piscataway: IEEE Press.CrossRefGoogle Scholar
  19. 19.
    Javadi, S. S., & Razzaque, M. (2013). Security and privacy in wireless body area networks for health care applications. In Wireless networks and security (pp. 165–187). Berlin: Springer.CrossRefGoogle Scholar
  20. 20.
    Kaur, N., & Sood S. K. (2018). A trustworthy system for secure access to patient centric sensitive information. Telematics and Informatics, 35(4), 790–800.CrossRefGoogle Scholar
  21. 21.
    Kraounakis, S., Demetropoulos, I. N., Michalas, A., Obaidat, M. S., Sarigiannidis, P. G., & Louta, M. D. (2015). A robust reputation-based computational model for trust establishment in pervasive systems. IEEE Systems Journal, 9(3), 878–891.CrossRefGoogle Scholar
  22. 22.
    Li, C. T., Lee, C. C., & Weng, C. Y. (2016). A secure cloud-assisted wireless body area network in mobile emergency medical care system. Journal of Medical Systems, 40(5), 117.CrossRefGoogle Scholar
  23. 23.
    Li, M., Lou, W., & Ren, K. (2010). Data security and privacy in wireless body area networks. IEEE Wireless Communications, 17(1), 51–58.CrossRefGoogle Scholar
  24. 24.
    Li, Z., Wang, H., & Fang, H. (2017). Group-based cooperation on symmetric key generation for wireless body area networks. IEEE Internet of Things Journal, 4(6), 1955–1963.CrossRefGoogle Scholar
  25. 25.
    Liu, J., Zhang, Z., Chen, X., & Kwak, K. S. (2014). Certificateless remote anonymous authentication schemes for wireless body area networks. IEEE Transactions on Parallel and Distributed Systems, 25(2), 332–342.CrossRefGoogle Scholar
  26. 26.
    Memos, V. A., Psannis, K. E., Ishibashi, Y., Kim, B. G., & Gupta, B. B. (2018). An efficient algorithm for media-based surveillance system (EAMSuS) in IoT smart city framework. Future Generation Computer Systems, 83, 619–628.CrossRefGoogle Scholar
  27. 27.
    Moosavi, H., & Bui, F. M. (2016). Delay-aware optimization of physical layer security in multi-hop wireless body area networks. IEEE Transactions on Information Forensics and Security, 11(9), 1928–1939.CrossRefGoogle Scholar
  28. 28.
    Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1658–1686.CrossRefGoogle Scholar
  29. 29.
    Niu, H., Sun, L., Ito, M., & Sezaki, K. (2014). Secure transmission through multihop relaying in wireless body area networks. In IEEE 3rd Global Conference on Consumer Electronics (GCCE) (pp. 395–396). Piscataway: IEEE.Google Scholar
  30. 30.
    Peng, H., Tian, Y., Kurths, J., Li, L., Yang, Y., & Wang, D. (2017). Secure and energy-efficient data transmission system based on chaotic compressive sensing in body-to-body networks. IEEE Transactions on Biomedical Circuits and Systems, 11(3), 558–573.CrossRefGoogle Scholar
  31. 31.
    Plageras, A. P., Psannis, K. E., Stergiou, C., Wang, H., & Gupta, B. B. (2018). Efficient IoT-based sensor big data collection–processing and analysis in smart buildings. Future Generation Computer Systems, 82, 349–357.CrossRefGoogle Scholar
  32. 32.
    Rani, M., Dhok, S., & Deshmukh, R. (2018). A systematic review of compressive sensing: Concepts, implementations and applications. IEEE Access, 6, 4875–4894.CrossRefGoogle Scholar
  33. 33.
    Shen, J., Chang, S., Shen, J., Liu, Q., & Sun, X. (2018). A lightweight multi-layer authentication protocol for wireless body area networks. Future Generation Computer Systems, 78, 956–963.CrossRefGoogle Scholar
  34. 34.
    Shi, L., Li, M., & Yu, S. (2012). BANA: Body area network authentication exploiting channel characteristics. In 5th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec’12).Google Scholar
  35. 35.
    Shi, L., Li, M., Yu, S., & Yuan, J. (2013). BANA: Body area network authentication exploiting channel characteristics. IEEE Journal on Selected Areas in Communications, 31(9), 1803–1816.CrossRefGoogle Scholar
  36. 36.
    Stergiou, C., & Psannis, K. E. (2017). Recent advances delivered by mobile cloud computing and internet of things for big data applications: A survey. International Journal of Network Management, 27(3), e1930.CrossRefGoogle Scholar
  37. 37.
    Stergiou, C., Psannis, K. E., Kim, B. G., & Gupta, B. (2018). Secure integration of IoT and cloud computing. Future Generation Computer Systems, 78, 964–975.CrossRefGoogle Scholar
  38. 38.
    Tewari, A., & Gupta, B. (2018). Security, privacy and trust of different layers in internet-of-things (IoTs) framework. Future Generation Computer SystemsCrossRefGoogle Scholar
  39. 39.
    Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Umpierrez, G. E., & Klonoff, D. C. (2018). Diabetes technology update: Use of insulin pumps and continuous glucose monitoring in the hospital. Diabetes Care, 41(8), 1579–1589.CrossRefGoogle Scholar
  41. 41.
    Venkatasubramanian, K. K., Banerjee, A., & Gupta, S. K. S. (2010). PSKA: Usable and secure key agreement scheme for body area networks. IEEE Transactions on Information Technology in Biomedicine, 14(1), 60–68.CrossRefGoogle Scholar
  42. 42.
    Venkatasubramanian, K. K., & Gupta, S. K. (2010). Physiological value-based efficient usable security solutions for body sensor networks. ACM Transactions on Sensor Networks, 6(4), 31.CrossRefGoogle Scholar
  43. 43.
    Wang, J., Han, K., Alexandridis, A., Zilic, Z., Pang, Y., Wu, W., et al. (2018). A novel security scheme for body area networks compatible with smart vehicles. Computer Networks, 143, 74–81.CrossRefGoogle Scholar
  44. 44.
    Wang, C., & Zhang, Y. (2015). New authentication scheme for wireless body area networks using the bilinear pairing. Journal of Medical Systems, 39(11), 136.CrossRefGoogle Scholar
  45. 45.
    Wang, L., Li, L., Li, J., Li, J., Gupta, B. B., & Liu, X. (2018). Compressive sensing of medical images with confidentially homomorphic aggregations. IEEE Internet of Things Journal, 6, 1402–1409.CrossRefGoogle Scholar
  46. 46.
    Zhao, Z. (2014). An efficient anonymous authentication scheme for wireless body area networks using elliptic curve cryptosystem. Journal of Medical Systems, 38(2), 13.CrossRefGoogle Scholar
  47. 47.
    Zhao, N., Ren, A., Rehman, M. U., Zhang, Z., Yang, X., & Hu, F. (2016). Biometric behavior authentication exploiting propagation characteristics of wireless channel. IEEE Access, 4, 4789–4796.CrossRefGoogle Scholar
  48. 48.
    Zhou, C., & Cui, Z. (2016). Certificate-based signature scheme in the standard model. IET Information Security, 11(5), 256–260.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations