Influential Reasonable Robust Virtual Machine Placement for Efficient Utilization and Saving Energy

  • Bibi Ruqia
  • Nadeem JavaidEmail author
  • Altaf Husain
  • Najeeba Muhammad Hassan
  • Hafiza Ghulam Hassan
  • Yumna Memon
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 994)


The integration of Cloud-Fog Platform (CFP) is built in order to provide online services to the consumers in an efficient way. Dynamic changes of resources put load on servers. Due to which extra energy demands and an improper usage of energy by consumers have an effect on the utility. Virtual Machine Placement (VMP) problem is considered to be solved with optimization technique as allocation of Virtual Machines (VMs) to a single Physical Machines (PMs). The distribution of energy with inefficient utilization of resources causes of the energy deficiency in noticing daily updates of consumers in a month. In this paper, game theory with coalition and non-coalition mechanism are applied for purpose of balancing electricity load among consumers. Results show that expectation of demanding electricity is kept low in order to minimize improper way of utilization of energy. However, increment in saving of energy will help consumers to sort out arising issue of an unbalanced load on utility due to extra demand. The efficient distribution of energy is addressed in order to have proper utilization and management of energy. Therefore, energy consumption is minimized due to efficient utilization of resources.


Cloud and fog platform Virtual machine placement problem VM allocation Optimization technique Game theory Load balancing 


  1. 1.
    Sahoo, P.K., Dehury, C.K., Veeravalli, B.: LVRM: on the design of efficient link based virtual resource management algorithm for cloud platforms. IEEE Trans. Parallel Distrib. Syst. 1, 1 (2018)Google Scholar
  2. 2.
    Samuel, O., Javaid, S., Javaid, N., Ahmed, S., Afzal, M., Ishmanov, F.: An efficient power scheduling in smart homes using Jaya based optimization with time-of-use and critical peak pricing schemes. Energies 11(11), 3155 (2018)CrossRefGoogle Scholar
  3. 3.
    Khalid, R., Javaid, N., Rahim, M.H., Aslam, S., Sher, A.: Fuzzy energy management controller and scheduler for smart homes. Sustain. Comput. Inf. Syst. 21, 103–118 (2019)Google Scholar
  4. 4.
    Wang, S., Xu, J., Zhang, N., Liu, Y.: A survey on service migration in mobile edge computing. IEEE Access 6, 23511–23528 (2018)CrossRefGoogle Scholar
  5. 5.
    Fatima, A., Javaid, N., Sultana, T., Hussain, W., Bilal, M., Shabbir, S., Ilahi, M.: Virtual machine placement via bin packing in cloud data centers. Electronics 7(12), 389 (2018)CrossRefGoogle Scholar
  6. 6.
    Wen, Y., Li, Z., Jin, S., Lin, C., Liu, Z.: Energy-efficient virtual resource dynamic integration method in cloud computing. IEEE Access 5, 12214–12223 (2017)CrossRefGoogle Scholar
  7. 7.
    Bianchini, R., Rajamony, R.: Power and energy management for server systems. Computer 37(11), 68–76 (2004)CrossRefGoogle Scholar
  8. 8.
    Vogels, W.: Beyond server consolidation. ACM Queue 6(1), 20–26 (2008)CrossRefGoogle Scholar
  9. 9.
    Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research problems in data center networks. ACM SIGCOMM Comput. Commun. Rev. 39(1), 68–73 (2008)CrossRefGoogle Scholar
  10. 10.
    Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. In: Proceedings of the 2011 IEEE/ACM 12th International Conference on Grid Computing, pp. 26-33. IEEE Computer Society, Sept 2011Google Scholar
  11. 11.
    Xiao, Z., Chen, Q., Luo, H.: Automatic scaling of internet applications for cloud computing services. IEEE Trans. Comput. 63(5), 1111–1123 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sahu, Y., Pateriya, R.K., Gupta, R.K.: Cloud server optimization with load balancing and green computing techniques using dynamic compare and balance algorithm. In: 2013 5th International Conference and Computational Intelligence and Communication Networks, pp. 527-531. IEEE, Sept 2013Google Scholar
  13. 13.
    Amokrane, A., Zhani, M.F., Langar, R., Boutaba, R., Pujolle, G.: Greenhead: virtual data center embedding across distributed infrastructures. IEEE Trans. Cloud Comput. 1(1), 36–49 (2013)CrossRefGoogle Scholar
  14. 14.
    Ferdaus, M.H., Murshed, M., Calheiros, R.N., Buyya, R.: Virtual machine consolidation in cloud data centers using ACO metaheuristic. In: European Conference on Parallel Processing, pp. 306-317. Springer, Cham, Aug 2014Google Scholar
  15. 15.
    Liu, X.F., Zhan, Z.H., Deng, J.D., Li, Y., Gu, T., Zhang, J.: An energy efficient ant colony system for virtual machine placement in cloud computing. IEEE Trans. Evol. Comput. 22(1), 113–128 (2018)CrossRefGoogle Scholar
  16. 16.
    Khalid, A., Javaid, N., Guizani, M., Alhussein, M., Aurangzeb, K., Ilahi, M.: Towards dynamic coordination among home appliances using multi-objective energy optimization for demand side management in smart buildings. IEEE Access 6, 19509–19529 (2018)CrossRefGoogle Scholar
  17. 17.
    Siraj, M.N., Ahmed, Z., Hanif, M.K., Chaudary, M.H., Khan, S.A., Javaid, N.: A hybrid routing protocol for wireless distributed networks. IEEE Access 6, 67244–67260 (2018)CrossRefGoogle Scholar
  18. 18.
    Yu, R., Ding, J., Maharjan, S., Gjessing, S., Zhang, Y., Tsang, D.H.: Decentralized and optimal resource cooperation in geo-distributed mobile cloud computing. IEEE Trans. Emerg. Top. Comput. 6(1), 72–84 (2018)CrossRefGoogle Scholar
  19. 19.
    Zuo, L., Shu, L., Dong, S., Chen, Y., Yan, L.: A multiobjective hybrid cloud resource scheduling method based on deadline and cost constraints. IEEE Access 5, 22067–22080 (2017)CrossRefGoogle Scholar
  20. 20.
    Song, Q., Wang, X., Qiu, T., Ning, Z.: An interference coordination-based distributed resource allocation scheme in heterogeneous cellular networks. IEEE Access 5, 2152–2162 (2017)CrossRefGoogle Scholar
  21. 21.
    Xiong, R., Li, X., Shi, J., Wu, Z., Jin, J.: HirePool: optimizing resource reuse based on a hybrid resource pool in the cloud. IEEE Access (2018)Google Scholar
  22. 22.
    Huang, H., Niu, B., Tang, S., Li, S., Zhao, S., Han, K., Zhu, Z.: Realizing Highly-Available, Scalable, and Protocol-Independent vSDN Slicing with a Distributed Network Hypervisor System (2018)Google Scholar
  23. 23.
    Zhang, L., Li, J.: Enabling robust and privacy-preserving resource allocation in fog computing. IEEE Access 6, 50384–50393 (2018)CrossRefGoogle Scholar
  24. 24.
    Mapetu, J.P.B., Chen, Z., Kong, L.: Heuristic cloudlet allocation approach based on optimal completion time and earliest finish time. IEEE Access 6, 61714–61727 (2018)CrossRefGoogle Scholar
  25. 25.
    Zhao, B., Fan, P., Ni, M.: Mchain: a blockchain-based VM measurements secure storage approach in IaaS cloud with enhanced integrity and controllability. IEEE Access 6, 43758–43769 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bibi Ruqia
    • 1
  • Nadeem Javaid
    • 2
    Email author
  • Altaf Husain
    • 3
  • Najeeba Muhammad Hassan
    • 1
  • Hafiza Ghulam Hassan
    • 1
  • Yumna Memon
    • 4
  1. 1.Sardar Bhadur Khan Women University QuettaQuettaPakistan
  2. 2.COMSATS Institute of Information TechnologyIslamabadPakistan
  3. 3.Balochistan Universty of Information Technology and Management SciencesQuettaPakistan
  4. 4.International DormitoryWuhan UniversityWuhanChina

Personalised recommendations