Skip to main content

RobotFarm: A Smart and Sustainable Hydroponic Appliance for Meeting Individual and Collective Needs

  • Conference paper
  • First Online:
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2019)

Abstract

The well-known phenomena of pollution and climate warming are increasingly threatening the quality and quantity of food worldwide. Smart farming is expected to be an effective countermeasure, and much research is available regarding the usefulness of applying technology and the Internet of Things (IoT) to agricultural production, including that using the hydroponic method. The aim of this study is to present a synthesis of the literature review on the critical need to improve the sustainable food approach, including the exploitation of advanced hydroponics systems, to then explain the benefits of an innovative ‘automatic hydroponic greenhouse-appliance’, patented under the name of RobotFarm. Features and positive effects of the appliance on micro and macro levels are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a way similar to hotel stars, the classification of holiday farms in Italy is based on sunflowers rating (from 1 to 5 sunflowers, where the number 5 denotes the superior category).

References

  1. Kopetz, H.: Internet of things. In: Kopetz, H. (ed.) Real-Time Systems, pp. 307–323. Springer, Wien (2011)

    Chapter  Google Scholar 

  2. Ryu, M., Yun, J., Miao, T., Ahn, I.Y., Choi, S.C., Kim, J.: Design and implementation of a connected farm for smart farming system. IEEE SENSORS 2015, pp. 1–4. Busan, South Korea (2015)

    Google Scholar 

  3. Talavera, J.M., Tobón, L.E., Gómez, J.A., Culman, M.A., Aranda, J.M., Parra, D.T., Quiroz, L.A., Hoyos, A., Garreta, L.E.: Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 142, 283–297 (2017)

    Google Scholar 

  4. Kim, T., Bae, N., Lee, M., Shin, C., Park, J., Cho, Y.: A study of an agricultural ontology model for an intelligent service in a vertical farm. Int. J. Smart Homes 7(4), 117–125 (2013)

    Google Scholar 

  5. Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin C.: Food security: the challenge of feeding 9 billion people. Science 327(5967), 812–818 (2010)

    Google Scholar 

  6. Foresight: The Future of Food and Farming. Final Project Report. The Government Office for Science, London (2011)

    Google Scholar 

  7. FAO (Food and Agriculture Organization of the United Nations): The State of Food and Agriculture: Climate Change. Agriculture and Food Security, FAO, Rome (2016)

    Google Scholar 

  8. Despommier, D.: The vertical farm: controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. Journal für Verbraucherschutz und Lebensmittelsicherheit 6(2), 233–236 (2011)

    Article  Google Scholar 

  9. Lundqvist, J., de Fraiture, C., Molden, D.: Saving Water: From Field to Fork: Curbing Losses and Wastage in the Food Chain. Stockholm International Water Institute, Stockholm (2008)

    Google Scholar 

  10. Xue, L., Liu, G., Parfitt, J., Liu, X., Van Herpen, E., Stenmarck, Å., O’Connor, C., Östergren, K., Cheng, S.: Missing food, missing data? A critical review of global food losses and food waste data. Environ. Sci. Technol. 51(12), 6618–6633 (2017)

    Google Scholar 

  11. Lim, V., Funk, M., Marcenaro, L., Regazzoni, C., Rauterberg, M.: Designing for action: an evaluation of social recipes in reducing food waste. Int. J. Hum Comput Stud. 100, 18–32 (2017)

    Article  Google Scholar 

  12. Pelletier, N., Audsley, E., Brodt, S., Garnett, T., Henriksson, P., Kendall, A., Kramer, K.J., Murphy, D., Nemecek, T., Troell M.: Energy intensity of agriculture and food systems. Ann. Rev. Environ. Resour. 36, 223–246 (2011)

    Google Scholar 

  13. Kader, A.A.: Increasing food availability by reducing postharvest losses of fresh produce. In: Mencarelli, F., Tonutti, P. (eds.) V International Postharvest Symposium on Acta Horticulturae (ISHS), vol. 682, pp. 2169–2176 (2005)

    Google Scholar 

  14. Ventour, L.: The food we waste. In: Waste and Resources Action Programme (WRAP), Banbury, UK (2008)

    Google Scholar 

  15. Quested, T., Johnson, H.: Household food and drink waste in the UK. In: Waste and Resources Action Programme (WRAP), Banbury, UK (2009)

    Google Scholar 

  16. Gillick, S., Quested, T.: Household food waste: Restated sata for 2007–2015. In: Waste and Resources Action Programme (WRAP), Banbury, UK (2018)

    Google Scholar 

  17. Gustavsson, J., Stage, J.: Retail waste of horticultural products in Sweden. Resour. Conserv. Recycl. 55(5), 554–556 (2011)

    Article  Google Scholar 

  18. Parfitt, J., Barthel, M., Macnaughton, S.: Food waste within food supply chains: quantification and potential for change to 2050. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365(1554), 3065–3081 (2010)

    Article  Google Scholar 

  19. Kulikovskaja, V., Aschemann-Witzel, J.: Food waste avoidance actions in food retailing: the case of Denmark. J. Int. Food Agribusiness Marketing 29(4), 328–345 (2017)

    Article  Google Scholar 

  20. Cornish, P.S.: Use of high electrical conductivity of nutrient solution to improve the quality of salad tomatoes (Lycopersicon esculentum) grown in hydroponic culture. Aust. J. Exp. Agric. 32(4), 513–520 (1992)

    Article  Google Scholar 

  21. Farkas, I.: Modelling and control in agricultural processes. Comput. Electron. Agric. 49(3), 315–316 (2005)

    Article  Google Scholar 

  22. Lommen, W.J.: The canon of potato science: 27. Hydroponics. Potato Res. 50(3–4), 315–318 (2007)

    Article  Google Scholar 

  23. Raviv, M., Lieth, J.H. (eds.): Soilless Culture: Theory and Practice. Elsevier, London (2007)

    Google Scholar 

  24. Torabi, M., Mokhtarzadeh, A., Mahlooji, M.: The role of hydroponics technique as a standard methodology in various aspects of plant biology researches. In: Toshiki, A. (ed.) Hydroponics: A Standard Methodology for Plant Biological Researches, pp. 113–134. InTech, Shanghai (2012)

    Google Scholar 

  25. Hershey, D.R.: Solution culture hydroponics: history & inexpensive equipment. Am. Biol. Teacher 56(2), 111–118 (1994)

    Article  Google Scholar 

  26. Song, W., Zhou, L., Yang, C., Cao, X., Zhang, L., Liu, X.: Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Protect. 23(3), 243–247 (2004)

    Article  Google Scholar 

  27. Jones Jr., J.B.: Hydroponics: A Practical Guide for the Soilless Grower. CRC Press, Boca Raton (2005)

    Google Scholar 

  28. Resh, H.M.: Hydroponics for the Home Grower. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  29. El-Kazzaz, K.A., El-Kazzaz, A.A.: Soilless agriculture a new and advanced method for agriculture development: an introduction. Agric. Res. Tech. (Open Access J.) 3(2), 1–10 (2017)

    Google Scholar 

  30. Förster, H., Adaskaveg, J.E., Kim, D.H., Stanghellini, M.E.: Effect of phosphite on tomato and pepper plants and on susceptibility of pepper to Phytophthora root and crown rot in hydroponic culture. Plant Dis. 82(10), 1165–1170 (1998)

    Article  Google Scholar 

  31. Kaewmard, N., Saiyod, S.: Sensor data collection and irrigation control on vegetable crop using smart phone and wireless sensor networks for smart farm. In: 2014 IEEE Conference on Wireless Sensors (ICWiSE), Subang, Malaysia, pp. 106–112 (2014)

    Google Scholar 

  32. Huang, C.L., Kan, K., Fu, T.T.: Consumer willingness-to-pay for food safety in Taiwan: a binary-ordinal probit model of analysis. J. Consum. Affairs 33(1), 76–91 (1999)

    Article  Google Scholar 

  33. Saito, M., Arakaki, R., Yamada, A., Tsunematsu, T., Kudo, Y., Ishimaru, N.: Molecular mechanisms of nickel allergy. Int. J. Mol. Sci. 17(202), 1–8 (2016)

    Google Scholar 

  34. Lee, C.P., Lee, Y.H., Lian, I.B., Su, C.C.: Increased prevalence of esophageal cancer in areas with high levels of nickel in farm soils. J. Cancer 7(12), 1724–1730 (2016)

    Article  Google Scholar 

  35. Toffler, A.: The Third Wave. William Morrow, New York (1980)

    Google Scholar 

  36. O’Brien, M.: A Crisis of Waste? Understanding the Rubbish Society. Routledge, London (2007)

    Google Scholar 

  37. Evans, D., Campbell, H., Murcott, A.: A brief pre-history of food waste and the social sciences. Sociol. Rev. 60, 5–26 (2012)

    Article  Google Scholar 

  38. Day, W., Audsley, E., Frost, A.R.: An engineering approach to modelling, decision support and control for sustainable systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363(1491), 527–541 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Angeloni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angeloni, S., Pontetti, G. (2020). RobotFarm: A Smart and Sustainable Hydroponic Appliance for Meeting Individual and Collective Needs. In: Barolli, L., Xhafa, F., Hussain, O. (eds) Innovative Mobile and Internet Services in Ubiquitous Computing . IMIS 2019. Advances in Intelligent Systems and Computing, vol 994. Springer, Cham. https://doi.org/10.1007/978-3-030-22263-5_26

Download citation

Publish with us

Policies and ethics