Advertisement

Hourly Electricity Load Forecasting in Smart Grid Using Deep Learning Techniques

  • Abdul Basit Majeed Khan
  • Nadeem JavaidEmail author
  • Orooj Nazeer
  • Maheen Zahid
  • Mariam Akbar
  • Majid Hameed Khan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 994)

Abstract

In this paper, a Deep Learning (DL) technique is introduced to forecast the electricity load accurately. We are facing energy shortage in today’s world. So, it is the need of the hour that proper scenario should be introduced to overcome this issue. For this purpose, moving towards Smart Grids (SG) from Traditional Grids (TG) is required. Electricity load is a factor which plays a major role in forecasting. For this purpose, we proposed a model which is based on selection, extraction and classification of historical data. Grey Correlation based Random Forest (RF) and Mutual Information (MI) is performed for feature selection, Kernel Principle Component Analysis (KPCA) is used for feature extraction and enhanced Convolutional Neural Network (CNN) is used for classification. Our proposed scheme is then compared with other benchmark schemes. Simulation results proved the efficiency and accuracy of the proposed model for hourly load forecasting of one day, one week and one month.

Keywords

Deep learning Smart grid Random forest Mutual Information 

References

  1. 1.
    Wang, K., Xu, C., Zhang, Y., Guo, S., Zomaya, A.: Robust big data analytics for electricity price forecasting in the smart grid. IEEE Trans. on Big Data 5(1), 34–45 (2017)CrossRefGoogle Scholar
  2. 2.
    Amarasinghe, K., Marino, D.L., Manic, M.: Deep neural networks for energy load forecasting. In: 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), pp. 1483–1488. IEEE (2017)Google Scholar
  3. 3.
    Keles, D., Scelle, J., Paraschiv, F., Fichtner, W.: Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Appl. Energy 162, 218–230 (2016)CrossRefGoogle Scholar
  4. 4.
    Saleh, A.I., Rabie, A.H., Abo-Al-Ez, K.M.: A data mining based load forecasting strategy for smart electrical grids. Adv. Eng. Inform. 30(3), 422–448 (2016)CrossRefGoogle Scholar
  5. 5.
    Zakarya, S., Abbas, H., Belal, M.: Long-term deep learning load forecasting based on social and economic factors in the Kuwait region. J. Theor. Appl. Inf. Technol. 95(7), (2017)Google Scholar
  6. 6.
    Kavousi-Fard, A., Samet, H., Marzbani, F.: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert. Syst. Appl. 41(13), 6047–6056 (2014)CrossRefGoogle Scholar
  7. 7.
    Mujeeb, S., Javaid, N., Ilahi, M., Wadud, Z., Ishmanov, F., Afzal, M.K.: Deep long short-term memory: a new price and load forecasting scheme for big data in smart cities. Sustainability 11(4), 987 (2019)CrossRefGoogle Scholar
  8. 8.
    Wang, J., Liu, F., Song, Y., Zhao, J.: A novel model: dynamic choice artificial neural network (DCANN) for an electricity price forecasting system. Appl. Soft Comput. 48, 281–297 (2016)CrossRefGoogle Scholar
  9. 9.
    Chang, H.H., Chiu, W.Y., Hsieh, T.Y. (2016). Multipoint fuzzy prediction for load forecasting in green buildings, pp. 562–567Google Scholar
  10. 10.
    Naz, A., Javed, M.U., Javaid, N., Saba, T., Alhussein, M., Aurangzeb, K.: Short-term electric load and price forecasting using enhanced extreme learning machine optimization in smart grids. Energies 12(5), 866 (2019)CrossRefGoogle Scholar
  11. 11.
    Bassamzadeh, N., Ghanem, R.: Multiscale stochastic prediction of electricity demand in smart grids using Bayesian networks. Appl. Energy 193, 369–380 (2017)CrossRefGoogle Scholar
  12. 12.
    Lusis, P., Khalilpour, K.R., Andrew, L., Liebman, A.: Short-term residential load forecasting: impact of calendar effects and forecast granularity. Appl. Energy 205, 654–669 (2017)CrossRefGoogle Scholar
  13. 13.
    Vrablecová, P., Ezzeddine, A.B., Rozinajová, V., Šárik, S., Sangaiah, A.K.: Smart grid load forecasting using online support vector regression. Comput. Electr. Eng. 65, 102–117 (2018)CrossRefGoogle Scholar
  14. 14.
    Zafar, I., Javaid, N., Iqbal, S., Aslam, S., Khan, A.Z., Abdul, W., Almogren, A., Alamri, A.: A Domestic Microgrid with Optimized Home Energy Management System. Energies 11(4), 1002 (2018)CrossRefGoogle Scholar
  15. 15.
    Shayeghi, H., Ghasemi, A., Moradzadeh, M., Nooshyar, M.: Simultaneous day-ahead forecasting of electricity price and load in smart grids. Energy Convers. Manag. 95, 371–384 (2015)CrossRefGoogle Scholar
  16. 16.
    Ahmad, A., Javaid, N., Mateen, A., Awais, M., Khan, Z.: Short-term load forecasting in smart grids: an intelligent modular approach. Energies 12(1), 164 (2019)CrossRefGoogle Scholar
  17. 17.
    Jindal, A., Singh, M., Kumar, N.: Consumption-Aware Data Analytical Demand Response Scheme for Peak Load Reduction in Smart Grid. IEEE Trans. Ind, Electron (2018)CrossRefGoogle Scholar
  18. 18.
    Shepero, M., van der Meer, D., Munkhammar, J., Widen, J.: Residential probabilistic load forecasting: a method using Gaussian process designed for electric load data. Appl. Energy 218, 159–172 (2018)CrossRefGoogle Scholar
  19. 19.
    Zahid, M., Ahmed, F., Javaid, N., Abbasi, R.A., Kazmi, Z., Syeda, H., Ilahi, M.: Electricity price and load forecasting using enhanced convolutional neural network and enhanced support vector regression in Smart Grids. Electronics 8(2), 122 (2019)CrossRefGoogle Scholar
  20. 20.
    Wang, K., Xu, C., Guo, S.: Big data analytics for price forecasting in smart grids. In: Global Communications Conference (GLOBECOM), 2016 IEEE pp 1–6. IEEE (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abdul Basit Majeed Khan
    • 1
  • Nadeem Javaid
    • 2
    Email author
  • Orooj Nazeer
    • 1
  • Maheen Zahid
    • 2
  • Mariam Akbar
    • 2
  • Majid Hameed Khan
    • 3
  1. 1.Abasyn University Islamabad CampusIslamabadPakistan
  2. 2.COMSATS University IslamabadIslamabadPakistan
  3. 3.Group 3 Technology LimitedAldridgeUK

Personalised recommendations