Half Hourly Electricity Load Forecasting Using Convolutional Neural Network

  • Abdul Basit Majeed Khan
  • Sajjad Khan
  • Sayeda Aimal
  • Muddassar Khan
  • Bibi Ruqia
  • Nadeem JavaidEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 994)


In this paper, enhanced Deep Learning (DL) method is implemented to resolve the accurate electricity load forecasting problem. Electricity load is a factor which plays major role in operations of Smart Grid (SM). For solving this problem, we propose a model which is based on preprocessing, selection and classification of historical data. Features are selected by Combine Feature Selection (CFS) using Decision Tree (DT) and Mutual Information (MI) techniques, and then CFS Convolutional Neural Network (CFSCNN) is used for forecasting of load. Our proposed scheme is also compared with other benchmark schemes. Simulation results show better efficiency and accuracy of proposed model for half hourly electricity load forecasting for one day, one week and one month ahead for the data obtained from ISO NE-CA electricity market.


Deep learning Classification Mutual information Smart grid Decision tree Convolutional neural network 


  1. 1.
    Wang, K., Xu, C., Zhang, Y., Guo, S., Zomaya, A.: Robustbig data analytics for electricity price forecasting in the smartgrid. IEEE Trans. Big Data 5(1), 34–45 (2017)CrossRefGoogle Scholar
  2. 2.
    Lusis, P., Khalilpour, K.R., Andrew, L., Liebman, A.: Short-term residential load forecasting: impact of calendar effects and forecast granularity. Appl. Energy 205, 654–669 (2017)CrossRefGoogle Scholar
  3. 3.
    Ebrahimi, A., Moshari, A.: Holidays short-term load forecasting using fuzzy improved similar day method. Int. Trans. Electr. Energy Syst. 23(8), 1254–1271 (2013)CrossRefGoogle Scholar
  4. 4.
    Cheng, F., Xiao, F., Zhao, Y.: A short-term building cooling load prediction method using deep learning algorithms. Appl. Energy 195, 222–233 (2017)CrossRefGoogle Scholar
  5. 5.
    Zafar, I., Javaid, N., Iqbal, S., Aslam, S., Khan, A.Z., Abdul, W., Almogren, A., Alamri, A.: A domestic microgrid with optimized home energy management system. Energies 11(4), 1002 (2018)CrossRefGoogle Scholar
  6. 6.
    Mohan, N., Soman, K.P., Kumar, S.S.: A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model. Appl. Energy 232, 229–244 (2018)CrossRefGoogle Scholar
  7. 7.
    Carvallo, J.P., Larsen, P.H., Sanstad, A.H., Goldman, C.A.: Long term load forecasting accuracy in electric utility integrated resource planning. Energy Policy 119, 410–422 (2018)CrossRefGoogle Scholar
  8. 8.
    Naz, A., Javed, M.U., Javaid, N., Saba, T., Alhussein, M., Aurangzeb, K.: Short-term electric load and price forecasting using enhanced extreme learning machine optimization in smart grids. Energies 12(5), 866 (2019)CrossRefGoogle Scholar
  9. 9.
    Nazar, M.S., Fard, A.E., Heidari, A., Shafie-khah, M., Catalão, J.P.: Hybrid model using three-stage algorithm for simultaneous load and price forecasting. Electr. Power Syst. Res. 165, 214–228 (2018)CrossRefGoogle Scholar
  10. 10.
    Raza, M.Q., Nadarajah, M., Hung, D.Q., Baharudin, Z.: An intelligent hybrid short-term load forecasting model for smart power grids. Sustain. Cities Soc. 31, 264–275 (2017)CrossRefGoogle Scholar
  11. 11.
    Zahid, M., Ahmed, F., Javaid, N., Abbasi, R.A., Kazmi, Z., Syeda, H., Ilahi, M.: Electricity price and load forecasting using enhanced convolutional neural network and enhanced support vector regression in smart grids. Electronics 8(2), 122 (2019)CrossRefGoogle Scholar
  12. 12.
    Boustani, A., Maiti, A., Jazi, S.Y., Jadliwala, M., Namboodiri, V.: Seer grid: privacy and utility implications of two-level load prediction in smart grids. IEEE Trans. Parallel Distrib. Syst. 28(2), 546–557 (2017)Google Scholar
  13. 13.
    Jiang, H., Zhang, Y., Muljadi, E., Zhang, J.J., Gao, D.W.: A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization. IEEE Trans. Smart Grid 9(4), 3341–3350 (2018)CrossRefGoogle Scholar
  14. 14.
    Kong, W., Dong, Z.Y., Hill, D.J., Luo, F., Xu, Y.: Short-term residential load forecasting based on resident behaviour learning. IEEE Trans. Power Syst. 33(1), 1087–1088 (2018)CrossRefGoogle Scholar
  15. 15.
    Li, L., Ota, K., Dong, M.: When weather matters: IoT-based electrical load forecasting for smart grid. IEEE Commun. Mag. 55(10), 46–51 (2017)CrossRefGoogle Scholar
  16. 16.
    Rafiei, M., Niknam, T., Aghaei, J., Shafie-Khah, M., Catalão, J.P.: Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine. IEEE Trans. on Smart Grid 9(6), 6961–6971 (2018)CrossRefGoogle Scholar
  17. 17.
    Melo, J.D., Carreno, E.M., Padilha-Feltrin, A., Minussi, C.R.: Grid-based simulation method for spatial electric load forecasting using power-law distribution with fractal exponent. Int. Trans. Electr. Energy Syst. 26(6), 1339–1357 (2016)CrossRefGoogle Scholar
  18. 18.
    Tondolo de Miranda, S., Abaide, A., Sperandio, M., Santos, M.M., Zanghi, E.: Application of artificial neural networks and fuzzy logic to long-term load forecast considering the price elasticity of electricity demand. Int. Trans. Electr. Energy Syst. 28(10), e2606 (2018)Google Scholar
  19. 19.
    Mujeeb, S., Javaid, N., Ilahi, M., Wadud, Z., Ishmanov, F., Afzal, M.K.: Deep long short-term memory: a new price and load forecasting scheme for big Data in smart cities. Sustainability 11(4), 987 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abdul Basit Majeed Khan
    • 1
  • Sajjad Khan
    • 2
  • Sayeda Aimal
    • 2
  • Muddassar Khan
    • 1
  • Bibi Ruqia
    • 3
  • Nadeem Javaid
    • 2
    Email author
  1. 1.Abasyn University IslamabadIslamabadPakistan
  2. 2.COMSATS University IslamabadIslamabadPakistan
  3. 3.Sardar Bhadur Khan Women University QuettaQuettaPakistan

Personalised recommendations