Skip to main content

Tumor Dormancy and Slow-Cycling Cancer Cells

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1164))

Abstract

Cancer cell heterogeneity is a universal feature of human tumors and represents a significant barrier to the efficacy and duration of anticancer therapies, especially targeted therapeutics. Among the heterogeneous cancer cell populations is a subpopulation of relatively quiescent cancer cells, which are in the G0/G1 cell-cycle phase and refractory to anti-mitotic drugs that target proliferative cells. These slow-cycling cells (SCCs) preexist in untreated tumors and frequently become enriched in treatment-failed tumors, raising the possibility that these cells may mediate therapy resistance and tumor relapse. Here we review several general concepts on tumor cell heterogeneity, quiescence, and tumor dormancy. We discuss the potential relationship between SCCs and cancer stem cells (CSCs). We also present our current understanding of how SCCs and cancer dormancy might be regulated. Increasing knowledge of SCCs and tumor dormancy should lead to identification of novel molecular regulators and therapeutic targets of tumor relapse, residual diseases, and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, X., et al. (2015). Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget, 6(27), 23959–23986.

    PubMed  PubMed Central  Google Scholar 

  2. Moore, N., & Lyle, S. (2011). Quiescent, slow-cycling stem cell populations in cancer: A review of the evidence and discussion of significance. Journal of Oncology, 2011, 396076.

    Article  Google Scholar 

  3. Tang, D. G. (2012). Understanding cancer stem cell heterogeneity and plasticity. Cell Research, 22(3), 457–472.

    Article  CAS  Google Scholar 

  4. Aguirre-Ghiso, J. A. (2007). Models, mechanisms and clinical evidence for cancer dormancy. Nature Reviews. Cancer, 7(11), 834–846.

    Article  CAS  Google Scholar 

  5. Salm, S., Burger, P. E., & Wilson, E. L. (2012). TGF-beta and stem cell factor regulate cell proliferation in the proximal stem cell niche. Prostate, 72(9), 998–1005.

    Article  CAS  Google Scholar 

  6. Salm, S. N., et al. (2005). TGF-beta maintains dormancy of prostatic stem cells in the proximal region of ducts. The Journal of Cell Biology, 170(1), 81–90.

    Article  CAS  Google Scholar 

  7. Santoni-Rugiu, E., et al. (2005). Progenitor cells in liver regeneration: Molecular responses controlling their activation and expansion. APMIS, 113(11–12), 876–902.

    Article  Google Scholar 

  8. Mishra, L., et al. (2005). The role of TGF-β and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene, 24(37), 5775–5789.

    Article  CAS  Google Scholar 

  9. Wilson, A., & Trumpp, A. (2006). Bone-marrow haematopoietic-stem-cell niches. Nature Reviews. Immunology, 6(2), 93–106.

    Article  CAS  Google Scholar 

  10. Yadav, A. S., et al. (2018). The biology and therapeutic implications of tumor dormancy and reactivation. Frontiers in Oncology, 8, 72.

    Article  Google Scholar 

  11. Sun, Q., et al. (2012). Immunotherapy using slow-cycling tumor cells prolonged overall survival of tumor-bearing mice. BMC Medicine, 10, 172.

    Article  Google Scholar 

  12. Almog, N. (2010). Molecular mechanisms underlying tumor dormancy. Cancer Letters, 294(2), 139–146.

    Article  CAS  Google Scholar 

  13. Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: An awakening field. Nature Reviews. Cancer, 14(9), 611–622.

    Article  CAS  Google Scholar 

  14. Jeter, C. R., et al. (2009). Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells, 27(5), 993–1005.

    Article  CAS  Google Scholar 

  15. Qin, J., et al. (2012). The PSA(−/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell, 10(5), 556–569.

    Article  CAS  Google Scholar 

  16. Tang, D. G., et al. (2007). Prostate cancer stem/progenitor cells: Identification, characterization, and implications. Molecular Carcinogenesis, 46(1), 1–14.

    Article  CAS  Google Scholar 

  17. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.

    Article  CAS  Google Scholar 

  18. Collins, A. T., et al. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65(23), 10946–10951.

    Article  CAS  Google Scholar 

  19. Singh, S. K., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828.

    CAS  PubMed  Google Scholar 

  20. Wright, M. H., et al. (2008). Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Research, 10(1), R10.

    Article  Google Scholar 

  21. Roesch, A., et al. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141(4), 583–594.

    Article  CAS  Google Scholar 

  22. Roesch, A., et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell, 23(6), 811–825.

    Article  CAS  Google Scholar 

  23. Kester, L., & van Oudenaarden, A. (2018). Single-cell transcriptomics meets lineage tracing. Cell Stem Cell, 23(2), 166–179.

    Article  CAS  Google Scholar 

  24. Zhao, T., et al. (2018). Single-cell RNA-Seq reveals dynamic early embryonic-like programs during chemical reprogramming. Cell Stem Cell, 23(1), 31–45.e7.

    Article  CAS  Google Scholar 

  25. Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965), 542–545.

    Article  CAS  Google Scholar 

  26. Zhang, D., et al. (2018). Histone 2B-GFP label-retaining prostate luminal cells possess progenitor cell properties and are intrinsically resistant to castration. Stem Cell Reports, 10(1), 228–242.

    Article  CAS  Google Scholar 

  27. Sakaue-Sawano, A., et al. (2008). Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell, 132(3), 487–498.

    Article  CAS  Google Scholar 

  28. Zielke, N., & Edgar, B. A. (2015). FUCCI sensors: Powerful new tools for analysis of cell proliferation. Wiley Interdisciplinary Reviews: Developmental Biology, 4(5), 469–487.

    Article  CAS  Google Scholar 

  29. Drost, J., & Clevers, H. (2018). Organoids in cancer research. Nature Reviews. Cancer, 18(7), 407–418.

    Article  CAS  Google Scholar 

  30. Miller, M. A., & Weissleder, R. (2017). Imaging of anticancer drug action in single cells. Nature Reviews. Cancer, 17(7), 399–414.

    Article  CAS  Google Scholar 

  31. van der Toom, E. E., Verdone, J. E., & Pienta, K. J. (2016). Disseminated tumor cells and dormancy in prostate cancer metastasis. Current Opinion in Biotechnology, 40, 9–15.

    Article  Google Scholar 

  32. Chen, X., et al. (2016). Defining a population of stem-like human prostate cancer cells that can generate and propagate castration-resistant prostate Cancer. Clinical Cancer Research, 22(17), 4505–4516.

    Article  CAS  Google Scholar 

  33. Horning, A. M., et al. (2018). Single-cell RNA-seq reveals a subpopulation of prostate cancer cells with enhanced cell-cycle-related transcription and attenuated androgen response. Cancer Research, 78(4), 853–864.

    Article  CAS  Google Scholar 

  34. Perego, M., et al. (2018). A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene, 37(3), 302–312.

    Article  CAS  Google Scholar 

  35. Tsujimura, A., et al. (2002). Proximal location of mouse prostate epithelial stem cells: A model of prostatic homeostasis. The Journal of Cell Biology, 157(7), 1257–1265.

    Article  CAS  Google Scholar 

  36. Lawson, D. A., et al. (2007). Isolation and functional characterization of murine prostate stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(1), 181–186.

    Article  CAS  Google Scholar 

  37. Burger, P. E., et al. (2005). Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proceedings of the National Academy of Sciences of the United States of America, 102(20), 7180–7185.

    Article  CAS  Google Scholar 

  38. Lawson, D. A., et al. (2010). Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proceedings of the National Academy of Sciences of the United States of America, 107(6), 2610–2615.

    Article  CAS  Google Scholar 

  39. Xin, L., Lawson, D. A., & Witte, O. N. (2005). The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 102(19), 6942–6947.

    Article  CAS  Google Scholar 

  40. Xin, L., et al. (2007). Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells, 25(11), 2760–2769.

    Article  CAS  Google Scholar 

  41. Wang, Z. A., et al. (2013). Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nature Cell Biology, 15(3), 274–283.

    Article  CAS  Google Scholar 

  42. Choi, N., et al. (2012). Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell, 21(2), 253–265.

    Article  CAS  Google Scholar 

  43. Wang, X., et al. (2009). A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature, 461(7263), 495–500.

    Article  CAS  Google Scholar 

  44. Karthaus, W. R., et al. (2014). Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell, 159(1), 163–175.

    Article  CAS  Google Scholar 

  45. Ousset, M., et al. (2012). Multipotent and unipotent progenitors contribute to prostate postnatal development. Nature Cell Biology, 14(11), 1131–1138.

    Article  CAS  Google Scholar 

  46. Zhang, D., et al. (2017). Developing a novel two-dimensional culture system to enrich human prostate luminal progenitors that can function as a cell of origin for prostate Cancer. Stem Cells Translational Medicine, 6(3), 748–760.

    Article  CAS  Google Scholar 

  47. Zhang, D., et al. (2016). Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nature Communications, 7, 10798.

    Article  CAS  Google Scholar 

  48. Bhatia, B., et al. (2008). Critical and distinct roles of p16 and telomerase in regulating the proliferative life span of normal human prostate epithelial progenitor cells. The Journal of Biological Chemistry, 283(41), 27957–27972.

    Article  CAS  Google Scholar 

  49. Rycaj, K., et al. (2016). Longitudinal tracking of subpopulation dynamics and molecular changes during LNCaP cell castration and identification of inhibitors that could target the PSA-/lo castration-resistant cells. Oncotarget, 7(12), 14220–14240.

    Article  Google Scholar 

  50. Patrawala, L., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25(12), 1696–1708.

    Article  CAS  Google Scholar 

  51. Patrawala, L., et al. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Research, 65(14), 6207–6219.

    Article  CAS  Google Scholar 

  52. Patrawala, L., et al. (2007). Hierarchical organization of prostate cancer cells in xenograft tumors: The CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Research, 67(14), 6796–6805.

    Article  CAS  Google Scholar 

  53. Patrawala, L. T., & G, D. (2007). CD44 as a functional cancer stem cell marker and a potential therapeutic target. In Autologous and cancer stem cell gene therapy (pp. 317–334). Singapore: World Scientific Publishing.

    Chapter  Google Scholar 

  54. Choi, E., et al. (2018). Lrig1+ gastric isthmal progenitor cells restore normal gastric lineage cells during damage recovery in adult mouse stomach. Gut, 67(9), 1595–1605.

    Article  CAS  Google Scholar 

  55. Jensen, K. B., et al. (2009). Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell, 4(5), 427–439.

    Article  CAS  Google Scholar 

  56. Jensen, K. B., & Watt, F. M. (2006). Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 11958–11963.

    Article  CAS  Google Scholar 

  57. Powell, A. E., et al. (2012). The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell, 149(1), 146–158.

    Article  CAS  Google Scholar 

  58. Wang, Y., Poulin, E. J., & Coffey, R. J. (2013). LRIG1 is a triple threat: ERBB negative regulator, intestinal stem cell marker and tumour suppressor. British Journal of Cancer, 108(9), 1765–1770.

    Article  CAS  Google Scholar 

  59. Wong, V. W., et al. (2012). Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nature Cell Biology, 14(4), 401–408.

    Article  CAS  Google Scholar 

  60. Linde, N., Fluegen, G., & Aguirre-Ghiso, J. A. (2016). The relationship between dormant cancer cells and their microenvironment. Advances in Cancer Research, 132, 45–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ lab was supported by grants from the U.S. National Institutes of Health (NIH) (R01CA237027 and R21CA218635), Department of Defense (W81XWH-16-1-0575), and RPCCC and NCI grant P30CA016056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean G. Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, J.E., Kirk, J., Ji, Y., Tang, D.G. (2019). Tumor Dormancy and Slow-Cycling Cancer Cells. In: Rhim, J., Dritschilo, A., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 1164. Springer, Cham. https://doi.org/10.1007/978-3-030-22254-3_15

Download citation

Publish with us

Policies and ethics