Skip to main content

On the Discovery of Educational Patterns using Biclustering

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 11528)

Abstract

The world-wide drive for academic excellence is placing new requirements on educational data analysis, triggering the need to find less-trivial educational patterns in non-identically distributed data with noise, missing values and non-constant relations. Biclustering, the discovery of a subset of objects (whether students, teachers, researchers, courses and degrees) correlated on a subset of attributes (performance indicators), has unique properties of interest thus being positioned to satisfy the aforementioned needs. Despite its relevance, the potentialities of applying biclustering in the educational domain remain unexplored. This work proposes a structured view on how to apply biclustering to comprehensively explore educational data, with a focus on how to guarantee actionable, robust and statistically significant results. The gathered results from student performance data confirm the relevance of biclustering educational data.

Keywords

  • Biclustering
  • Pattern mining
  • Educational data mining

R. Henriques and A. C. Finamore—Co-first author

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-22244-4_17
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-22244-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    BicPAMS available at https://web.ist.utl.pt/rmch/bicpams/. ADS data available upon request.

References

  1. Antunes, C.: Acquiring background knowledge for intelligent tutoring systems. In: EDM (2008)

    Google Scholar 

  2. Baker, R.S., Inventado, P.S.: Educational data mining and learning analytics. In: Larusson, J.A., White, B. (eds.) Learning Analytics, pp. 61–75. Springer, New York (2014)

    Google Scholar 

  3. Barracosa, J., Antunes, C.: Anticipating teachers performance. In: KDD IW on Knowledge Discovery in Educational Data, pp. 77–82 (2011)

    Google Scholar 

  4. Buldu, A., Üçgün, K.: Data mining application on students data. Procedia - Soc. Behav. Sci. 2(2), 5251–5259 (2010)

    CrossRef  Google Scholar 

  5. Chandra, E., Nandhini, K.: Knowledge mining from student data. Eur. J. Sci. Res. 47(1), 156–163 (2010)

    Google Scholar 

  6. Charrad, M., Ben Ahmed, M.: Simultaneous clustering: a survey. In: Kuznetsov, S.O., Mandal, D.P., Kundu, M.K., Pal, S.K. (eds.) PReMI 2011. LNCS, vol. 6744, pp. 370–375. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  7. Dutt, A., Aghabozrgi, S., Ismail, M.B., Mahroeian, H.: Clustering algorithms applied in educational data mining. IJ Info. Electron. Eng. 5(2), 112 (2015)

    Google Scholar 

  8. Dutt, A., Ismail, M.A., Herawan, T.: A systematic review on educational data mining. IEEE Access 5, 15991–16005 (2017)

    CrossRef  Google Scholar 

  9. Eren, K., Deveci, M., Küçüktunç, O., Çatalyürek, Ü.: A comparative analysis of biclustering algorithms for gene expression data. Brief. Bioinf. 14(3), 279–292 (2013)

    CrossRef  Google Scholar 

  10. Gottin, V., Jiménez, H., Finamore, A.C., Casanova, M.A., Furtado, A.L., Nunes, B.P.: An analysis of degree curricula through mining student records. In: ICALT, pp. 276–280. IEEE (2017)

    Google Scholar 

  11. Henriques, R., Antunes, C., Madeira, S.C.: A structured view on pattern mining-based biclustering. Pattern Recognit. 48(12), 3941–3958 (2015)

    CrossRef  Google Scholar 

  12. Henriques, R., Ferreira, F.L., Madeira, S.C.: BicPAMS: software for biological data analysis with pattern-based biclustering. BMC Bioinform. 18(1), 82 (2017)

    CrossRef  Google Scholar 

  13. Henriques, R., Madeira, S.C.: BicPAM: pattern-based biclustering for biomedical data analysis. Algorithms Mol. Biol. 9(1), 27 (2014)

    CrossRef  Google Scholar 

  14. Henriques, R., Madeira, S.C.: BiC2PAM: constraint-guided biclustering for biological data analysis with domain knowledge. Algorithms Mol. Biol. 11(1), 23 (2016)

    CrossRef  Google Scholar 

  15. Henriques, R., Madeira, S.C.: BSig: evaluating the statistical significance of biclustering solutions. Data Min. Knowl. Discov. 32(1), 124–161 (2018)

    MathSciNet  CrossRef  Google Scholar 

  16. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. 1(1), 24–45 (2004)

    CrossRef  Google Scholar 

  17. Olaniyi, A.S., Abiola, H.M., Taofeekat Tosin, S.I., Kayode, Babatunde, A.N.: Knowledge discovery from educational database using apriori algorithm. CS&Telec. 51(1) (2017)

    Google Scholar 

  18. Trivedi, S., Pardos, Z., Sárkozy, G., Heffernan, N.: Co-clustering by bipartite spectral graph partitioning for out-of-tutor prediction. In: Proceedings of the 5th International Conference on Educational Data Mining, Chania, Greece, 19–21 June 2012, pp. 33–40 (2012)

    Google Scholar 

  19. Trivedi, S., Pardos, Z., Sárkozy, G., Heffernan, N.: Spectral clustering in educational data mining. In: EDM (2010)

    Google Scholar 

  20. Vale, A., Madeira, S.C., Antunes, C.: Mining coherent evolution patterns in education through biclustering. In: Educational Data Mining (2014)

    Google Scholar 

Download references

Acknowledgement

This work is supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) under project iLU DSAIPA/DS/0111/2018 and INESC-ID pluriannual UID/CEC/50021/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Henriques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Henriques, R., Finamore, A.C., Casanova, M.A. (2019). On the Discovery of Educational Patterns using Biclustering. In: Coy, A., Hayashi, Y., Chang, M. (eds) Intelligent Tutoring Systems. ITS 2019. Lecture Notes in Computer Science(), vol 11528. Springer, Cham. https://doi.org/10.1007/978-3-030-22244-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22244-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22243-7

  • Online ISBN: 978-3-030-22244-4

  • eBook Packages: Computer ScienceComputer Science (R0)