Skip to main content

Botany of Mangroves

  • Chapter
  • First Online:
Mangroves and Aquaculture

Part of the book series: Coastal Research Library ((COASTALRL,volume 33))

Abstract

Despite such harsh environmental conditions, mangroves have colonized the nearshore environment of much of the global tropical coastline. In doing so, mangrove forests have converted what is otherwise often barren coastlines into one of the most productive ecosystems on the planet. Measured regarding human livelihoods, carbon processing, fisheries support, erosion control, or biodiversity; mangrove forests are one of the most productive ecosystems on the planet, yet they mangrove forests are historically one of the most underappreciated and misunderstood land cover types. This chapter examines the botany of mangroves. Section 1.1 describes the biology of mangroves with a focus on those present in Ecuador. Section 1.2 examines the dominant Ecuadorian mangrove that is Rhizophora mangle which is currently undergoing a taxonomic reclassification to Rhizophora samoensis. Section 1.3 delineates the global and Ecuadorian distribution of mangrove species. Section 1.4 examines current and past estimates of mangrove forest area for both global mangrove forests and Ecuadorian mangrove forests. Section 1.5 examines the role of mangrove forests in supporting the wider ecosystem that they inhabit. Section 1.6 focusses upon the role of mangrove forests in supporting wild fish fisheries and Sect 1.7 on the manner in which mangrove forests provided important livelihood options and other goods and services to the people that reside nearby. Section 1.8 elucidates on the role of mangrove forests in mitigating global climate change and recent advances in this critical arena.

To the land animal or plant, the sea is a hostile environment. High salinity, wave action, and fluctuating water levels present problems that are rarely experienced in terrestrial or freshwater habitats.

(Hogarth 2007 P. 1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A halophyte is a plant adapted to growing in saline conditions, as in a salt marsh.

  2. 2.

    Any halophyte that can only tolerate relatively low concentrations of salt.

  3. 3.

    It should be noted that Hamilton and Casey (2016) calculate mangrove forest canopy cover as a percentage pixel cover. This leads to lower estimates than the other pixel presence or absence methodologes employed by all other authors in this list. When adjusted to a presence or absence pixel system, the global mangrove forest area changes for 2000 to 139,158 km2 (Hamilton et al. 2018).

References

  • Acosta JRS (2018) Chain of supply of the ecuadorian black shell and its risk of extinction. Janus. http://janus.ec/cadena-de-suministro-de-la-concha-negra-ecuatoriana-y-su-riesgo-de-extincion/. Accessed 17 Dec 2018

  • Aizpuru M, Achard F, Blasco F (2000) Global assessment of cover change of the mangrove forests using satellite imagery at medium to high resolution, EEC Research Project No. 15017-1999-05 FIED ISP FR. Joint Research Center, Ispra

    Google Scholar 

  • Alvarez-León R, Garcia-Hansen I (2003) Biodiversity associated with mangroves in Colombia. ISME/GLOMIS 3(1):1–2

    Google Scholar 

  • Armitage D (2002) Socio-institutional dynamics and the political ecology of mangrove forest conservation in Central Sulawesi, Indonesia. Glob Environ Chang 12(3):203–217. https://doi.org/10.1016/S0959-3780(02)00023-7

    Article  Google Scholar 

  • Arriaga L, Montaño M, Vásconez J (1999) Integrated management perspectives of the Bahia de Caráquez Zone and Chone River Estuary, Ecuador. Ocean Coast Manag 42(2–4):229–241. https://doi.org/10.1016/s0964-5691(98)00055-6

    Article  Google Scholar 

  • Bakhuizen van den Brink R (1921) Revisio generis Avicenniae. Bull Jard Bot Buitenz 3:199–226

    Google Scholar 

  • Batagoda BMS (2003) The economic valuation of alternative uses of mangrove forests in Sri Lanka. UNEP/GPA, The Hague

    Google Scholar 

  • Blaber SJM (2007) Mangroves and fishes: issues of diversity, dependence, and dogma. Bull Mar Sci 80(3):457–472

    Google Scholar 

  • Blanchard J, Prado G (1995) Natural regeneration of rhizophora mangle in strip clearcuts in Northwest Ecuador. Biotropica 27(2):160–167

    Article  Google Scholar 

  • Blanco JF (2018) Mangroves species richness: feedback. Research Gate, Berlin. https://doi.org/10.13140/RG.2.2.22958.15680

    Book  Google Scholar 

  • Bodero A (1993) Mangrove ecosystems of Ecuador. In: Lacerda LD (ed) Conservation and sustainable utilization of mangrove forests in Latin America and Africa regions. ISME, Okinawa, pp 55–74

    Google Scholar 

  • Borda CA, Cruz R (2004) Pesca artesanal de bivalvos (Anadara tuberculosa y A. similis) y su relación con eventos ambientales. Pacífico colombiano. Rev Investig Mar 25(3):197–208

    Google Scholar 

  • Boyd CE, Clay JW (1998) Shrimp aquaculture and the environment. Sci Am 278(June):58–65

    Article  Google Scholar 

  • Bunting P, Rosenqvist A, Lucas R, Rebelo L-M, Hilarides L, Thomas N, Hardy A, Itoh T, Shimada M, Finlayson C (2018) The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens 10(10):1669

    Article  Google Scholar 

  • Butler RA (2018) Mongabay: calculating deforestation figures for the Amazon. Mongabay. https://data.mongabay.com/general_tables.htm, https://data.mongabay.com/deforestation.htm, https://rainforests.mongabay.com/amazon/deforestation_calculations.html. Accessed 26 Jan 2017

  • Cárdenas H, Fuentes Á, González F, Quesada S, Gil J, Gallo J (2018) Conectividad genética de poblaciones naturales de la piangua (Anadara tuberculosa y Anadara similis) en la costa Pacífica colombiana estimada a partir de marcadores moleculares microsatélites [recurso electrónico]

    Google Scholar 

  • Chong VC (2007) Mangroves-fisheries linkages in the Malaysian perspective. Bull Mar Sci 80(3):755–772

    Google Scholar 

  • CLIRSEN (1987) Estudio Multitemporal de los Manglares, Camaroneras y Areas Salinas de la Costa Ecuatoriana. vol 1. Centro De Levantamientos Integrados De Recursos Naturales Por Sensores Remotos, Quito

    Google Scholar 

  • CLIRSEN (2007) Actualizacion Del Estudio Multitemporal de Manglares, Camaroneras Y Areas Salinas En Las Costa Continental Ecuatoriana Al Ano 2006. vol 1. Centro De Levantamientos Integrados De Recursos Naturales Por Sensores Remotos, Quito

    Google Scholar 

  • Collins S (2010) Mangrove destruction and shrimp aquaculture in ecuador: a focus on property right enforcement. University of Ottawa, Ottawa

    Google Scholar 

  • Conchedda G, Lambin EF, Mayaux P (2011) Between land and sea: livelihoods and environmental changes in mangrove ecosystems of senegal. Ann Assoc Am Geogr 101(6):1259–1284. https://doi.org/10.1080/00045608.2011.579534

    Article  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farberk S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260. https://doi.org/10.1038/387253a0

    Article  Google Scholar 

  • Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002

    Article  Google Scholar 

  • Doat J (1977) The calorific value of tropical woods. Bois et Forets des Tropiques 172:33–55

    Google Scholar 

  • Dodson CH, Gentry AH (1991) Biological extinction in Western Ecuador. Ann Mo Bot Gard 78(2):273–295

    Article  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4(5):293–297

    Article  Google Scholar 

  • Duke N (2018) On the difference between R. Mangle and R. Samoensis. Personal Communication 18th December 2018

    Google Scholar 

  • Ebarvia M, Corazón M (1999) Total economic valuation: coastal and marine resources in the straits of Malacca. MPP-EAS Technical Report No. 24. PEMSEA Technical Report. GEF/UNDP/IMO Regional Programme for the Prevention and Management of Marine Pollution in the East Asian Seas (MPP-EAS)/Partnerships in Environmental Management for the Seas of East Asia (PEMSEA), Quezon City, Phillipines

    Google Scholar 

  • Ellison JC, Duke N (2015) Rhizophora samoensis. The IUCN red list of threatened species version 2018-2. IUCN. Accessed 12 Dec 2018

    Google Scholar 

  • Ellison AM, Farnsworth EJ (1996) Anthropogenic disturbance of caribbean mangrove ecosystems: past impacts, present trends, and future predictions. Biotropica 28(4):549–565. https://doi.org/10.2307/2389096

    Article  Google Scholar 

  • Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob Ecol Biogeogr 8(2):95–115

    Article  Google Scholar 

  • Ellison A, Farnsworth E, Moore G (2015) Rhizophora mangle. The IUCN red list of threatened species version 2018-2. IUCN. Accessed 12 Dec 2018

    Google Scholar 

  • Fisher P, Spalding M (1993) Protected areas with mangrove habitat. vol draft report. World Conservation Centre, Cambridge

    Google Scholar 

  • Flater D (2018) Tide table: Guayaquil, Ecuador. http://tides.mobilegeographics.com/calendar/year/2324.html. Accessed 24 Nov 2018

  • Frias-Torres S, Barroso P, Eklund A-M, Schull J, Serafy JE (2007) Activity patterns of three juvenile goliath grouper, Epinephelus Itajara, in a mangrove nursery. Bull Mar Sci 80:587–594

    Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20(1):154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x

    Article  Google Scholar 

  • Gore R (1977) The tree nobody liked. Natl Geogr 155:669–689

    Google Scholar 

  • Graindorge D, Calahorrano A, Charvis P, Collot JY, Bethoux N (2004) Deep structures of the Ecuador convergent margin and the Carnegie Ridge, possible consequence on great earthquakes recurrence interval. Geophys Res Lett 31(4):L04603

    Article  Google Scholar 

  • Granek EF, Frasier K (2007) The impacts of red mangrove (Rhizophora Mangle) deforestation on zooplankton communities in Bocas Del Toro, Panama. Bull Mar Sci 80(3):905–914

    Google Scholar 

  • Groombridge B (1992) Global biodiversity: status of the earth’s living resources. WCMC, London

    Book  Google Scholar 

  • Guevara JM, Granda V (2009) El manglar es vida. Ministerio de Cultura, Quito

    Google Scholar 

  • Hamilton SE (2013) Assessing the role of commercial aquaculture in displacing mangrove forest. Bull Mar Sci 89(2):585–601. https://doi.org/10.5343/bms.2012.1069

    Article  Google Scholar 

  • Hamilton SE, Casey D (2016) Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob Ecol Biogeogr 25(6):729–738. https://doi.org/10.1111/geb.12449

    Article  Google Scholar 

  • Hamilton SE, Collins S (2013) Las Respuestas a Los Medios De Subsistencia Deforestación De Los Manglares en Las Provincias Del Norte De Ecuador. Bosque 34(2):143–153. https://doi.org/10.4067/S0717-92002013000200003

    Article  Google Scholar 

  • Hamilton SE, Friess DA (2018) Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat Clim Chang 8(3):240–244. https://doi.org/10.1038/s41558-018-0090-4

    Article  Google Scholar 

  • Hamilton SE, Lovette J (2015) Ecuador’s mangrove forest carbon stocks: a spatiotemporal analysis of living carbon holdings and their depletion since the advent of commercial aquaculture. PLoS One 10(3):e0118880. https://doi.org/10.1371/journal.pone.0118880

    Article  Google Scholar 

  • Hamilton SE, Stankwitz C (2012) Examining the relationship between international aid and mangrove deforestation in coastal Ecuador from 1970 to 2006. J Land Use Sci 7(2):177–202. https://doi.org/10.1080/1747423x.2010.550694

    Article  Google Scholar 

  • Hamilton SE, Lovette JP, Borbor-Cordova MJ, Millones M (2017) The carbon holdings of Northern Ecuador’s mangrove forests. Ann Am Assoc Geogr 107(1):54–71. https://doi.org/10.1080/24694452.2016.1226160

    Article  Google Scholar 

  • Hamilton SE, Castellanos-Galindo GA, Millones-Mayer M, Chen M (2018) Remote sensing of mangrove forests: current techniques and existing databases. In: Makowski C, Finkl CW (eds) Threats to mangrove forests: hazards, vulnerability, and management, vol 25. Springer International Publishing, Cham, pp 497–520. https://doi.org/10.1007/978-3-319-73016-5_22

    Chapter  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853. https://doi.org/10.1126/science.1244693

    Article  Google Scholar 

  • Harcourt CS, Sayer JA (1996) The conservation atlas of tropical forests: the Americas. MacMillan Reference Books, New York

    Google Scholar 

  • He Z, Zhang Z, Guo W, Zhang Y, Zhou R, Shi S (2015) De novo assembly of coding sequences of the mangrove palm (Nypa fruticans) using RNA-Seq and discovery of whole-genome duplications in the ancestor of palms. PLoS One 10(12):e0145385

    Article  Google Scholar 

  • Hogarth PJ (1999) The biology of mangroves. Biology of habitats. Oxford University Press, New York

    Google Scholar 

  • Hogarth PJ (2007) The biology of mangroves and seagrasses. Biology of habitats. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hogarth PJ (2015) The biology of mangroves and seagrasses. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hutchison J, Spalding M, zu Ermgassen P (2014) The role of mangroves in fisheries enhancement. The Nature Conservancy and Wetlands International, Cambridge, p 54

    Google Scholar 

  • IFAS (2009) Coastal wetland plants. University of Florida. http://fmel.ifas.ufl.edu/habitat/cono.shtml. Accessed 30 Jan 2009

  • IMF (2017) World economic outlook database. World economic and financial surveys. International Monetary Fund, Washington, DC

    Google Scholar 

  • ITTO, ISME (1993) Mangrove ecosystems: technical reports. International Society for Mangrove Ecosystems (ISME), International Tropical Timber Organization (ITTO), Japan International Association for Mangroves (JIAM), Okinawa

    Google Scholar 

  • IUCN SSC (2010) IUCN red list categories and criteria: version 3.1

    Google Scholar 

  • IUCN, UNEP (2016) The World Database on Protected Areas (WDPA). www.protectedplanet.net. Accessed 01 Dec 2018

  • Kathiresan K, Qasim SZ (2005) Biodiversity of mangrove ecosystems. Hindustan Pub. Corp, New Delhi

    Google Scholar 

  • Kelvin K, Lim P, Murphy DH, Morgany T, Sivasothi N, Peter K, Ng L, Soong BC, Hugh TW, Tan KS, Tan T, Tan K (2001) A guide to mangroves of Singapore. Raffles Museum of Biodiversity Research, The National University of Singapore & The Singapore Science Centre. Accessed 01 Apr 2008

    Google Scholar 

  • Koenig CC, Coleman FC, Eklund A-M, Schull J, Ueland J (2007) Mangroves as essential nursery habitat for goliath grouper (Epinephelus itajara). Bull Mar Sci 80(3):567–586

    Google Scholar 

  • Labastida E (1995) Diagnóstico Económico de las Actividades Relacionadas con la Zona de Manglar con énfasis en las Unidades de Producción Camaronera. In: Inefan E (ed) Estudio de las Alternativas de Manejo del Área Comprendida entre los Ríos Cayapas y Mataje, Provincia de Esmeraldas, vol 1. EcoCiencia & INEFAN, Quito, p Appendix 9

    Google Scholar 

  • López-Angarita J, Roberts CM, Tilley A, Hawkins JP, Cooke RG (2016) Mangroves and people: lessons from a history of use and abuse in four Latin American countries. For Ecol Manag 368:151–162

    Article  Google Scholar 

  • Lugendo BR, Nagelkerken I, Kruitwagen G, van der Velde G, Mgaya YD (2007) Relative importance of mangroves as feeding habitats for fishes: a comparison between mangrove habitats with different settings. Bull Mar Sci 80(3):497–512

    Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annu Rev Ecol Syst 5:39–64

    Article  Google Scholar 

  • Macnae W (1968) A general account of the fauna and flora of mangrove swamps and forests in the Indo-West Pacific region. Adv Mar Biol 6:73–270

    Article  Google Scholar 

  • Macnae W, Kalk M (1962) The ecology of the mangrove Swamps at Inhaca Island, Mocambique. J Ecol 50(1):19–34

    Article  Google Scholar 

  • Madsen JE, Mix R, Balslev H (2001) Flora of Puna Island: Plant resources on a neotropical Island. Aarhus University Press, Langelandsgade

    Google Scholar 

  • Mejía-Rentería JC, Castellanos-Galindo GA, Cantera-Kintz JR, Hamilton SE (2018) A comparison of Colombian Pacific mangrove extent estimations: implications for the conservation of a unique Neotropical tidal forest. Estuar Coast Shelf Sci 212:233–240. https://doi.org/10.1016/j.ecss.2018.07.020

    Article  Google Scholar 

  • Moreno J, Mora E (2009) La pesquería artesanal del recurso concha Andara tuberculosa y A. similis en la costa ecuatoriana durante el 2004

    Google Scholar 

  • Nagelkerken I (2007) Are non-estuarine mangroves connected to coral reefs through fish migration? Bull Mar Sci 80(3):595–607

    Google Scholar 

  • Naylor RL, Goldburg RJ, Mooney H, Beveridge M, Clay J, Folke C, Kautsky N, Lubchenco J, Primavera J, Williams M (1998) Nature’s subsidies to shrimp and salmon farming. Science 282(5390):883–884

    Article  Google Scholar 

  • O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, Collins LS, de Queiroz A, Farris DW, Norris RD, Stallard RF, Woodburne MO, Aguilera O, Aubry M-P, Berggren WA, Budd AF, Cozzuol MA, Coppard SE, Duque-Caro H, Finnegan S, Gasparini GM, Grossman EL, Johnson KG, Keigwin LD, Knowlton N, Leigh EG, Leonard-Pingel JS, Marko PB, Pyenson ND, Rachello-Dolmen PG, Soibelzon E, Soibelzon L, Todd JA, Vermeij GJ, Jackson JBC (2016) Formation of the Isthmus of Panama. Sci Adv 2(8):e1600883. https://doi.org/10.1126/sciadv.1600883

    Article  Google Scholar 

  • Ocampo-Thomason P (2006) Mangroves, people and cockles: impacts of the shrimp-farming industry on mangrove communities in Esmeraldas Province, Ecuador. In: Hoanh CT, Tuong TP, Gowing JW, Hardy B (eds) Environment and livelihoods in tropical coastal zones: managing agriculture-fishery-aquaculture conflicts (Comprehensive assessment of water management in agriculture series), vol 2. Oxford University Press, London, pp 140–153

    Google Scholar 

  • Odum WE, Heald EJ (1972) Trophic analyses of an estuarine mangrove community. Bull Mar Sci 22(3):671–738

    Google Scholar 

  • Ong JE (2002) The hidden costs of mangrove services: use of mangroves for shrimp aquaculture. Paper presented at the International Science Roundtable for the Media, Bali, Indonesia, June 04, 2002

    Google Scholar 

  • Palomares MLD, Pauly D (2018) Sealifebase: Anadara tuberculosa v10.2018. Vancover.

    Google Scholar 

  • Parks PJ, Bonifaz M (1994) Nonsustainable use of renewable resources: mangrove deforestation and mariculture in Ecuador. Mar Resour Econ 9(1):1–18

    Article  Google Scholar 

  • Plaziat J-C, Cavagnetto C, Koeniguer J-C, Baltzer F (2001) History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetl Ecol Manag 9(3):161–180

    Article  Google Scholar 

  • Rosati I, Prosperi P, Latham J, Kainuma M (2008) World atlas of mangroves. In: Sessa R (ed) Terrestrial observations of our planet, GTOS 50, vol 1. Food and Agricultural Organization of the United Nations, Rome, pp 30–31

    Google Scholar 

  • Saenger P, Hegerl EJ, Davie JDS (1983) Global Status of mangrove ecosystems, Commission on Ecology Papers No. 3, vol 3. World Conservation Union (IUCN), Gland

    Google Scholar 

  • SeaLifeBase: Anadara tuberculosa V10.2018 (2018) https://www.sealifebase.ca/summary/Anadara-tuberculosa.html https://www.sealifebase.ca/. Accessed 10 2018

  • Shervette VR, Aguirre WE, Blacio E, Cevallos R, Gonzalez M, Pozo F, Gelwick F (2007) Fish communities of a disturbed mangrove wetland and an adjacent Tidal River in Palmar, Ecuador. Estuar Coast Shelf Sci 72(1–2):115–128

    Article  Google Scholar 

  • Siikamäki J, Sanchirico JN, Jardine SL (2012) Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc Natl Acad Sci Early Ed 109:14369–14374. https://doi.org/10.1073/pnas.1200519109

    Article  Google Scholar 

  • Snedaker SC (1986) Traditional uses of south american mangrove resources and the socio-economic effect of ecosystem changes. In: Kunstadter P, Bird ECF, Sabhasri S (eds) Workshop on man in the mangroves, vol 1. United Nations University, Tokyo, pp 102–112

    Google Scholar 

  • Spalding M, Blasco F, Field C (eds) (1997) World mangrove atlas. International Society for Mangrove Ecosystems, Okinawa

    Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan, London

    Book  Google Scholar 

  • Spalding M, McIvor A, Tonneijck F, Tol S, Eijk PV (2014) Mangroves for coastal defence. Wetlands Internat, Wageningen

    Google Scholar 

  • Taillardat P, Friess DA, Lupascu M (2018) Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol Lett 14(10):20180251

    Article  Google Scholar 

  • Tomascik T (1997) The ecology of the Indonesian seas. Oxford University Press, Oxford

    Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge/Cambridgeshire

    Google Scholar 

  • Twilley RR, Cárdenas W, Rivera-Monroy VH, Espinoza J, Suescum R, Armijos MM, Solórzano L (2001) The gulf of guayaquil and the Guayas River Estuary, Ecuador. In: Seeliger U, Kjerfve B (eds) Coastal marine ecosystems of Latin America. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 245–263. https://doi.org/10.1007/978-3-662-04482-7_18

    Chapter  Google Scholar 

  • UN FAO (1981) Tropical forest resources assessment project: forest resources of tropical asia. FAO, Rome

    Google Scholar 

  • UN FAO (2004) Mangrove forest management guidelines, FAO Forestry Paper 117, vol 117. FAO, Rome. ISBN 92-5-103445-1

    Google Scholar 

  • UN FAO (2007) The world’s mangroves 1980–2005, FAO Forestry Paper, vol 153. FAO, Rome

    Google Scholar 

  • UN FAO Fisheries and Aquaculture Department (2017) FishStat Plus – Universal software for fishery statistical time series. FAO, Rome

    Google Scholar 

  • UN FAO Fisheries and Aquaculture Department (2018) The State of world fisheries and aquaculture 2018—Meeting the sustainable development goals. The state of world fisheries and aquaculture. UN FAO Fisheries and Aquaculture Department, Rome

    Google Scholar 

  • Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51(10):807–815. https://doi.org/10.1641/0006-3568(2001)051[0807,MFOOTW]2.0.CO;2

    Article  Google Scholar 

  • Veach K (1996) Gender, resource use, conservation attitudes and local participation in mangrove fishing villages in Northern Esmeraldas Province, Ecuador. University of Florida, Gainesville

    Google Scholar 

  • Wang L, Mu M, Li X, Lin P, Wang W (2011) Differentiation between true mangroves and mangrove associates based on leaf traits and salt contents. J Plant Ecol 4(4):292–301. https://doi.org/10.1093/jpe/rtq008

    Article  Google Scholar 

  • Warne K (2007) Mangroves: forests of the tide. Natl Geogr 211:88–117

    Google Scholar 

  • Yamanaka MD, Ogino S-Y, Wu P-M, Jun-Ichi H, Mori S, Matsumoto J, Syamsudin F (2018) Maritime continent coastlines controlling earth’s climate. Prog Earth Planet Sci 5(1):21. https://doi.org/10.1186/s40645-018-0174-9

    Article  Google Scholar 

  • Yáñez-Espinosa L, Flores J (2011) A review of sea-level rise effect on mangrove forest species: anatomical and morphological modifications. In: Casalegno S (ed) Global warming impacts-case studies on the economy, human health, and on urban and natural environments. InTech Europe, Rijeka, Croatia. ISBN: 978-953-307-785-7

    Google Scholar 

  • Zhang Z, He Z, Xu S, Li X, Guo W, Yang Y, Zhong C, Zhou R, Shi S (2016) Transcriptome analyses provide insights into the phylogeny and adaptive evolution of the mangrove fern genus Acrostichum. Sci Rep 6:35634

    Article  Google Scholar 

  • Zorn J (1796) Afbeeldingen der artseny-gewassen met derzelver nederduitsche en latynsche beschryvingen. In: Oskamp L, Houttuyn M, Krauss JC (eds) Images of the physician’s crops with their traditional and Latin names

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

1.1 Supplementary Electronic Material (S)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamilton, S.E. (2020). Botany of Mangroves. In: Mangroves and Aquaculture. Coastal Research Library, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-22240-6_1

Download citation

Publish with us

Policies and ethics