Bubble Trouble: Strategies Against Filter Bubbles in Online Social Networks
- 1 Citations
- 1.2k Downloads
Abstract
In the recent past, some electoral decisions have gone against the pre-election expectations, what led to greater emphasis on social networking in the creation of filter bubbles. In this article, we examine whether Facebook usage motives, personality traits of Facebook users, and awareness of the filter bubble phenomenon influence whether and how Facebook users take action against filter bubbles. To answer these questions we conducted an online survey with 149 participants in Germany. While we found out that in our sample, the motives for using Facebook and the awareness of the filter bubble have an influence on whether a person consciously takes action against the filter bubble, we found no influence of personality traits. The results show that Facebook users know for the most part that filter bubbles exist, but still do little about them. Therefore it can be concluded that in today’s digital age, it is important not only to inform users about the existence of filter bubbles, but also about various possible strategies for dealing with them.
Keywords
Filter bubble Echo chamber Avoidance strategies Big Five Facebook usage motivesNotes
Acknowledgements
The authors would like to thank Nils Plettenberg and Johannes Nakayama for their help in improving this article. We would like to thank Nora Ehrhardt and Marion Wießmann for their support in this study. This research was supported by the Digital Society research program funded by the Ministry of Culture and Science of the German State of North Rhine-Westphalia.
References
- 1.Van Aelst, P., et al.: Political communication in a high-choice media environment: a challenge for democracy? Ann. Int. Commun. Assoc. 41(1), 3–27 (2017)CrossRefGoogle Scholar
- 2.Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2), 211–236 (2017)CrossRefGoogle Scholar
- 3.Azucar, D., Marengo, D., Settanni, M.: Predicting the big 5 personality traits from digital footprints on social media: a meta-analysis. Pers. Individ. Differ. 124, 150–159 (2018)CrossRefGoogle Scholar
- 4.Bakshy, E., Messing, S., Adamic, L.A.: Exposure to ideologically diverse news and opinion on Facebook. Science 348(6239), 1130–1132 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Bakshy, E., et al.: The role of social networks in information diffusion. In: Proceedings of the 21st International Conference on World Wide Web, pp. 519–528 (2012)Google Scholar
- 6.Barberá, P., et al.: Tweeting from left to right: is online political communication more than an echo chamber? Psychol. Sci. 26(10), 1531–1542 (2015)MathSciNetCrossRefGoogle Scholar
- 7.Beam, M.A.: Automating the news: how personalized news recommender system design choices impact news reception. Commun. Res. 41(8), 1019–1041 (2014)CrossRefGoogle Scholar
- 8.Beam, M.A., et al.: Facebook news and (de)polarization: reinforcing spirals in the 2016 US election. Inf. Commun. Soc. 21(7), 940–958 (2018)CrossRefGoogle Scholar
- 9.Bellogin, A., Cantador, I., Castells, P.: A comparative study of heterogeneous item recommendations in social systems. Inf. Sci. 221, 142–169 (2013)MathSciNetCrossRefGoogle Scholar
- 10.Zuiderveen Borgesius, F.G., et al.: Should we worry about filter bubbles? https://policyreview.info/articles/analysis/should-we-worryabout-filter-bubbles. Accessed 26 Feb 2019
- 11.Bozdag, E., van den Hoven, J.: Breaking the filter bubble: democracy and design. Ethics Inf. Technol. 17(4), 249–265 (2015)CrossRefGoogle Scholar
- 12.Jonathan, B.: Explaining the emergence of political fragmentation on social media: the role of ideology and extremism. J. Comput. Mediat. Commun. 23(1), 17–33 (2018)CrossRefGoogle Scholar
- 13.Calero Valdez, A., Burbach, L., Ziefle, M.: Political opinions of us and them and the influence of digital media usage. In: Meiselwitz, G. (ed.) SCSM 2018. LNCS, vol. 10913, pp. 189–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91521-0_15CrossRefGoogle Scholar
- 14.Colleoni, E., Rozza, A., Arvidsson, A.: Echo chamber or public sphere? Predicting political orientation and measuring political homophily in twitter using big data. J. Commun. 64(2), 317–332 (2014)CrossRefGoogle Scholar
- 15.Conover, M.D., et al.: Political polarization on Twitter. In: Fifth International Conference on Weblogs and Social media (ICWSM), pp. 89–96 (2011)Google Scholar
- 16.Cumming, G.: The new statistics: why and how. Psychol. Sci. 25(1), 7–29 (2014)Google Scholar
- 17.De Raad, B.: The Big Five Personality Factors: The Psycholexical Approach to Personality. Hogrefe & Huber Publishers, Göttingen (2000)Google Scholar
- 18.DiFranzo, D.J., Gloria-Garcia, K.: Filter bubbles and fake news. XRDS: Crossroads ACM Mag. Stud. 23(3), 32–35 (2017)CrossRefGoogle Scholar
- 19.Dubois, E., Blank, G.: The echo chamber is overstated: the moderating effect of political interest and diverse media. Inf. Commun. Soc. 21(5), 729–745 (2018)CrossRefGoogle Scholar
- 20.Dylko, I., et al.: The dark side of technology: an experimental investigation of the influence of customizability technology on online political selective exposure. Comput. Hum. Behav. 73, 181–190 (2017)CrossRefGoogle Scholar
- 21.Efron, M.: Using cocitation information to estimate political orientation in web documents. Knowl. Inf. Syst. 9(4), 492–511 (2006)MathSciNetCrossRefGoogle Scholar
- 22.Epstein, R., Robertson, R.E.: The search engine manipulation effect (SEME) and its possible impact on the outcomes of elections. Proc. Nat. Acad. Sci. 112(33), E4512–E4521 (2015)CrossRefGoogle Scholar
- 23.Eslami, M., et al.: I always assumed that i wasn’t really that close to [her]: reasoning about invisible algorithms in news feeds. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 153–162 (2015)Google Scholar
- 24.Flaxman, S.R., Goel, S., Rao, J.M.: Filter bubbles, echo chambers, and online news consumption. Public Opin. Q. 80(S1), 298–320 (2016)CrossRefGoogle Scholar
- 25.Fletcher, R., Nielsen, R.K.: Are news audiences increasingly fragmented? A cross-national comparative analysis of cross-platform news audience fragmentation and duplication. J. Commun. 67(4), 476–498 (2017)CrossRefGoogle Scholar
- 26.Garrett, R.K.: Echo chambers online? Politically motivated selective exposure among internet news users. J. Comput.-Mediat. Commun. 14(2), 265–285 (2009)MathSciNetCrossRefGoogle Scholar
- 27.Goel, S., Mason, W., Watts, D.J.: Real and perceived attitude agreement in social networks. J. Pers. Soc. Psychol. 99(4), 611–621 (2010)CrossRefGoogle Scholar
- 28.Goldberg, L.R.: An alternative “description of personality": the big-five factor structure. J. Pers. Soc. Psychol. 59, 1216–1229 (1990)CrossRefGoogle Scholar
- 29.Goldman, E.: Search engine bias and the demise of search engine utopianism. In: Spink, A., Zimmer, M. (eds.) Web Search: Multidisciplinary Perspectives. ISKM, vol. 14, pp. 121–133. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-75829-7_8CrossRefGoogle Scholar
- 30.González, R.J.: Hacking the citizenry? Personality profiling, ‘big data’ and the election of Donald Trump. Comput. Human Behav. 33(3), 9–12 (2017)Google Scholar
- 31.Helberger, N., Karppinen, K., D’Acunto, L.: Exposure diversity as a design principle for recommender systems. Inf. Commun. Soc. 21(2), 191–207 (2018)CrossRefGoogle Scholar
- 32.Hoang, V.T., et al.: Domain-specific queries and Web search personalization: some investigations. In: Proceedings of the 11th International Workshop on Automated Specification and Verification of Web Systems (2015)Google Scholar
- 33.Introna, L.D., Nissenbaum, H.: Shaping the web: why the politics of search engines matters. Inf. Soc. 16(3), 169–185 (2000)CrossRefGoogle Scholar
- 34.John, O.P., Naumann, L.P., Soto, C.J.: Paradigm shift to the integrative big-five trait taxonomy: history, measurement, and conceptual issues. In: John, O.P., Robins, R.W., Pervin, L.A. (eds.) Handbook of Personality: Theory and Research, pp. 114–158. Guilford Press, New York (2008)Google Scholar
- 35.Kaplan, A.M., Haenlein, M.: Users of the world, unite! The challenges and opportunities of social media. Bus. Horiz. 53(1), 59–68 (2010)CrossRefGoogle Scholar
- 36.Karlsen, R., et al.: Echo chamber and trench warfare dynamics in online debates. Eur. J. Commun. 32(3), 257–273 (2018)CrossRefGoogle Scholar
- 37.Kobayashi, T., Ikeda, K.: Selective exposure in political web browsing: empirical verification of ‘cyber-balkanization’ in Japan and the USA. Inf. Commun. Soc. 12(6), 929–953 (2009)CrossRefGoogle Scholar
- 38.Koene, A., et al.: Ethics of personalized information filtering. In: Tiropanis, T., Vakali, A., Sartori, L., Burnap, P. (eds.) INSCI 2015. LNCS, vol. 9089, pp. 123–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18609-2_10CrossRefGoogle Scholar
- 39.Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proc. Nat. Acad. Sci. 110(15), 5802–5805 (2013)CrossRefGoogle Scholar
- 40.Leese, M.: The new profiling: algorithms, black boxes, and the failure of anti-discriminatory safeguards in the European Union. Secur. Dialogue 45(5), 494–511 (2014)CrossRefGoogle Scholar
- 41.Macnish, K.: Unblinking eyes: the ethics of automating surveillance. Ethics Inf. Technol. 14(2), 151–167 (2012)CrossRefGoogle Scholar
- 42.McCombs, M.E., Shaw, D.L.: The agenda-setting function of mass media. Public Opin. 36(2), 41–46 (1972)Google Scholar
- 43.Mitchell, A., et al.: Political polarization and media habits (2014). http://www.journalism.org/2014/10/21/political-polarizationmedia-habits/
- 44.Munson, S.A., Lee, S.L, Resnick, P.: Encouraging reading of diverse political viewpoints with a browser widget. In: International Conference on Weblogs and Social Media (ICWSM) (2013)Google Scholar
- 45.Nagulendra, S., Vassileva, J.: Providing awareness, explanation and control of personalized filtering in a social networking site. Inf. Syst. Front. 18(1), 145–158 (2016)CrossRefGoogle Scholar
- 46.Pariser, E.: The Filter Bubble: What the Internet Is Hiding from You. Penguin, London (2011)Google Scholar
- 47.Portugal, I., Alencar, P., Cowan, D.: The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst. Appl. 97, 205–227 (2018)CrossRefGoogle Scholar
- 48.Rader, E., Gray, R.: Understanding user beliefs about algorithmic curation in the Facebook news feed. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, pp. 173–182 (2015)Google Scholar
- 49.Rammstedt, B., et al.: A short scale for assesing the big five dimensions of personality: 10 item big five inventory (BFI-10). Methoden Daten Anal. 7(2), 233–249 (2013)Google Scholar
- 50.Resnick, P., et al.: Bursting your (filter) bubble: strategies for promoting diverse exposure. In: Proceedings of the Conference on Computer Supported Cooperative Work Companion, CSCW 2013, pp. 95–100 (2013)Google Scholar
- 51.Sandvig, C., et al.: Auditing algorithms: research methods for detecting discrimination on internet platforms (2018)Google Scholar
- 52.Stroud, N.J.: Media use and political predispositions: revisiting the concept of selective exposure. Polit. Behav. 30(3), 341–366 (2008)CrossRefGoogle Scholar
- 53.Sunstein, C.: # Republic: Divided Democracy in the Age of Social Media. Princeton University Press, Princeton (2017)CrossRefGoogle Scholar
- 54.Trilling, D., van Klingeren, M., Tsfati, Y.: Selective exposure, political polarization, and possible mediators: evidence from The Netherlands. J. Public Opin. Res. 29(2), 189–213 (2016)Google Scholar
- 55.Yom-Tov, E., Dumais, S., Guo, Q.: Promoting civil discourse through search engine diversity. Soc. Sci. Comput. Rev. 32(2), 145–154 (2014)CrossRefGoogle Scholar