Skip to main content

Capture of Stability and Coordination Indicators in Virtual Training Scenarios for the Prevention of Slip, Trip, and Fall (STF) Accidents

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11581)

Abstract

The aim of the project is to develop and evaluate a training environment for the prevention of falls with the help of an application in virtual reality (VR). The participants of our study walk on a treadmill with fall protection while immersing into a virtual scenario where they should cross virtual obstacles. Potential parameters reflecting the plasticity of the neuromotor system are investigated in order to search for possible learning effects and their stabilization. In addition, it will be determined how many perturbations (i.e. obstacles) are necessary to establish a learning process. The results will be used to check the experimental setup and to prepare a main study for the development of a training program that helps preventing slip, trip, and fall (STF) accidents using a VR environment. So far two pilot measurements have been completed and parameters that may indicate learning effects were calculated. Initial results do not reveal clear learning effects, however, they inform about relevant adjustments for setting up systematic investigations and provide important details about strategies for data acquisition and analysis.

Keywords

  • Accident prevention
  • STF hazards
  • Virtual reality
  • Transfer effects
  • Gait perturbation
  • Behavioral training

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-22216-1_16
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-22216-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. DGUV: Statistik. Arbeitsunfallgeschehen 2015. Deutsche Gesetzliche Unfallversicherung (DGUV), Berlin (2016). https://publikationen.dguv.de/dguv/pdf/10002/au_statistik_2015.pdf

  2. Lehto, M.R., Cook, B.T.: Occupational health and safety management. In: Salvendy, G. (ed.) Handbook of Human Factors and Ergonomics, pp. 701–733. Wiley, Hoboken (2012). ISBN 978-0-470-52838-9

    Google Scholar 

  3. EU OSH Framework Directive 89/391/EEC of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work. Official Journal of the European Union L 183, 29/06/1989, pp. 1–8 (2008)

    Google Scholar 

  4. Mohr, J.-O.: Fit gegen das Stolpern – Projektstudie der HFUK Nord. In: Ellegast, R. (ed.) 6. DGUV Fachgespräch Ergonomie. Zusammenfassung der Vorträge vom 2/3, November 2016, pp. 125–127. Deutsche Gesetzliche Unfallversicherung e. V. (DGUV), Berlin (2017). ISBN 978-3-86423-201-5

    Google Scholar 

  5. Epro, G., Mierau, A., Mccrum, C., Leyendecker, M., Bruggemann, G.-P., Karamanidis, K.: Retention of gait stability improvements over 1.5 years in older adults: effects of perturbation exposure and triceps surae neuromuscular exercise. J. Neurophysiol. 119(6), 2229–2240 (2018). https://doi.org/10.1152/jn.00513.2017

    CrossRef  Google Scholar 

  6. Pai, Y.-C., Yang, F., Bhatt, T., Wang, E.: Learning from laboratory-induced falling: long-term motor retention among older adults. Age 36(3), 1367–1376 (2014). https://doi.org/10.1007/s11357-014-9640-5

    CrossRef  Google Scholar 

  7. Hale, K.S., Stanney, K.M. (eds.): Handbook of Virtual Environments: Design, Implementation, and Applications. CRC Press, Boca Raton (2015). ISBN 9781138074637

    Google Scholar 

  8. Duque, G., et al.: Effects of balance training using a virtual-reality system in older fallers. Clin. Interv. Aging 8, 257–263 (2013). https://doi.org/10.2147/cia.s41453

    CrossRef  Google Scholar 

  9. Mirelman, A., Maidan, I., Herman, T., Deutsch, J.E., Giladi, N., Hausdorff, J.M.: Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with parkinson’s disease? J. Gerontol. Ser. Biol. Sci. Med. Sci. 66A(2), 234–240 (2010). https://doi.org/10.1093/gerona/glq201

    CrossRef  Google Scholar 

  10. Parijat, P., Lockhart, T.E., Liu, J.: Effects of perturbation-based slip training using a virtual reality environment on slip-induced falls. Ann. Biomed. Eng. 43(4), 958–967 (2014). https://doi.org/10.1007/s10439-014-1128-z

    CrossRef  Google Scholar 

  11. Riem, L., Van Dehy, J., Onushko, T., Beardsley, S.: Inducing compensatory changes in gait similar to external perturbations using an immersive head mounted display. In: Proceedings of the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 128–135. IEEE, New York (2018). https://doi.org/10.1109/vr.2018.8446432

  12. Rietdyk, S., Rhea, C.K.: The effect of the visual characteristics of obstacles on risk of tripping and gait parameters during locomotion. Ophthalmic Physiol. Opt. 31(3), 302–310 (2011). https://doi.org/10.1111/j.1475-1313.2011.00837.x

    CrossRef  Google Scholar 

  13. Maiwald, C., Sterzing, T., Mayer, T.A., Milani, T.L.: Detecting foot-to-ground contact from kinematic data in running. Footwear Sci. 1(2), 111–118 (2009). https://doi.org/10.1080/19424280903133938

    CrossRef  Google Scholar 

  14. Hak, L., et al.: Speeding up or slowing down? Gait adaptations to preserve gait stability in response to balance perturbations. Gait Posture 36(2), 260–264 (2012). https://doi.org/10.1016/j.gaitpost.2012.03.005

    CrossRef  Google Scholar 

  15. Winter, D.: Human balance and posture control during standing and walking. Gait Posture 3(4), 193–214 (1995). https://doi.org/10.1016/0966-6362(96)82849-9

    CrossRef  MathSciNet  Google Scholar 

  16. Hof, A.L., Gazendam, M.G.J., Sinke, W.E.: The condition for dynamic stability. J. Biomech. 38(1), 1–8 (2005). https://doi.org/10.1016/j.jbiomech.2004.03.025

    CrossRef  Google Scholar 

  17. Traquair, H.M.: An Introduction to Clinical Perimetry. Henry Kimpton, London (1938)

    Google Scholar 

  18. Friemert, D., Saala, F., Hartmann, U., Ellegast, R.: Similarities and differences in posture during simulated order picking in real life and virtual reality. In: Duffy, Vincent G. (ed.) DHM 2018. LNCS, vol. 10917, pp. 41–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91397-1_4

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anika Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Weber, A., Nickel, P., Hartmann, U., Friemert, D., Karamanidis, K. (2019). Capture of Stability and Coordination Indicators in Virtual Training Scenarios for the Prevention of Slip, Trip, and Fall (STF) Accidents. In: Duffy, V. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Human Body and Motion. HCII 2019. Lecture Notes in Computer Science(), vol 11581. Springer, Cham. https://doi.org/10.1007/978-3-030-22216-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22216-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22215-4

  • Online ISBN: 978-3-030-22216-1

  • eBook Packages: Computer ScienceComputer Science (R0)