Abstract
The aim of the project is to develop and evaluate a training environment for the prevention of falls with the help of an application in virtual reality (VR). The participants of our study walk on a treadmill with fall protection while immersing into a virtual scenario where they should cross virtual obstacles. Potential parameters reflecting the plasticity of the neuromotor system are investigated in order to search for possible learning effects and their stabilization. In addition, it will be determined how many perturbations (i.e. obstacles) are necessary to establish a learning process. The results will be used to check the experimental setup and to prepare a main study for the development of a training program that helps preventing slip, trip, and fall (STF) accidents using a VR environment. So far two pilot measurements have been completed and parameters that may indicate learning effects were calculated. Initial results do not reveal clear learning effects, however, they inform about relevant adjustments for setting up systematic investigations and provide important details about strategies for data acquisition and analysis.
Keywords
- Accident prevention
- STF hazards
- Virtual reality
- Transfer effects
- Gait perturbation
- Behavioral training
This is a preview of subscription content, access via your institution.
Buying options




References
DGUV: Statistik. Arbeitsunfallgeschehen 2015. Deutsche Gesetzliche Unfallversicherung (DGUV), Berlin (2016). https://publikationen.dguv.de/dguv/pdf/10002/au_statistik_2015.pdf
Lehto, M.R., Cook, B.T.: Occupational health and safety management. In: Salvendy, G. (ed.) Handbook of Human Factors and Ergonomics, pp. 701–733. Wiley, Hoboken (2012). ISBN 978-0-470-52838-9
EU OSH Framework Directive 89/391/EEC of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work. Official Journal of the European Union L 183, 29/06/1989, pp. 1–8 (2008)
Mohr, J.-O.: Fit gegen das Stolpern – Projektstudie der HFUK Nord. In: Ellegast, R. (ed.) 6. DGUV Fachgespräch Ergonomie. Zusammenfassung der Vorträge vom 2/3, November 2016, pp. 125–127. Deutsche Gesetzliche Unfallversicherung e. V. (DGUV), Berlin (2017). ISBN 978-3-86423-201-5
Epro, G., Mierau, A., Mccrum, C., Leyendecker, M., Bruggemann, G.-P., Karamanidis, K.: Retention of gait stability improvements over 1.5 years in older adults: effects of perturbation exposure and triceps surae neuromuscular exercise. J. Neurophysiol. 119(6), 2229–2240 (2018). https://doi.org/10.1152/jn.00513.2017
Pai, Y.-C., Yang, F., Bhatt, T., Wang, E.: Learning from laboratory-induced falling: long-term motor retention among older adults. Age 36(3), 1367–1376 (2014). https://doi.org/10.1007/s11357-014-9640-5
Hale, K.S., Stanney, K.M. (eds.): Handbook of Virtual Environments: Design, Implementation, and Applications. CRC Press, Boca Raton (2015). ISBN 9781138074637
Duque, G., et al.: Effects of balance training using a virtual-reality system in older fallers. Clin. Interv. Aging 8, 257–263 (2013). https://doi.org/10.2147/cia.s41453
Mirelman, A., Maidan, I., Herman, T., Deutsch, J.E., Giladi, N., Hausdorff, J.M.: Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with parkinson’s disease? J. Gerontol. Ser. Biol. Sci. Med. Sci. 66A(2), 234–240 (2010). https://doi.org/10.1093/gerona/glq201
Parijat, P., Lockhart, T.E., Liu, J.: Effects of perturbation-based slip training using a virtual reality environment on slip-induced falls. Ann. Biomed. Eng. 43(4), 958–967 (2014). https://doi.org/10.1007/s10439-014-1128-z
Riem, L., Van Dehy, J., Onushko, T., Beardsley, S.: Inducing compensatory changes in gait similar to external perturbations using an immersive head mounted display. In: Proceedings of the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 128–135. IEEE, New York (2018). https://doi.org/10.1109/vr.2018.8446432
Rietdyk, S., Rhea, C.K.: The effect of the visual characteristics of obstacles on risk of tripping and gait parameters during locomotion. Ophthalmic Physiol. Opt. 31(3), 302–310 (2011). https://doi.org/10.1111/j.1475-1313.2011.00837.x
Maiwald, C., Sterzing, T., Mayer, T.A., Milani, T.L.: Detecting foot-to-ground contact from kinematic data in running. Footwear Sci. 1(2), 111–118 (2009). https://doi.org/10.1080/19424280903133938
Hak, L., et al.: Speeding up or slowing down? Gait adaptations to preserve gait stability in response to balance perturbations. Gait Posture 36(2), 260–264 (2012). https://doi.org/10.1016/j.gaitpost.2012.03.005
Winter, D.: Human balance and posture control during standing and walking. Gait Posture 3(4), 193–214 (1995). https://doi.org/10.1016/0966-6362(96)82849-9
Hof, A.L., Gazendam, M.G.J., Sinke, W.E.: The condition for dynamic stability. J. Biomech. 38(1), 1–8 (2005). https://doi.org/10.1016/j.jbiomech.2004.03.025
Traquair, H.M.: An Introduction to Clinical Perimetry. Henry Kimpton, London (1938)
Friemert, D., Saala, F., Hartmann, U., Ellegast, R.: Similarities and differences in posture during simulated order picking in real life and virtual reality. In: Duffy, Vincent G. (ed.) DHM 2018. LNCS, vol. 10917, pp. 41–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91397-1_4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Weber, A., Nickel, P., Hartmann, U., Friemert, D., Karamanidis, K. (2019). Capture of Stability and Coordination Indicators in Virtual Training Scenarios for the Prevention of Slip, Trip, and Fall (STF) Accidents. In: Duffy, V. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Human Body and Motion. HCII 2019. Lecture Notes in Computer Science(), vol 11581. Springer, Cham. https://doi.org/10.1007/978-3-030-22216-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-22216-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22215-4
Online ISBN: 978-3-030-22216-1
eBook Packages: Computer ScienceComputer Science (R0)