Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 259 Accesses

Abstract

Several significant results were achieved within the framework of this thesis (previous section). Along the way, some challenges and opportunities were identified, which could benefit in one or another way from the presented developments. These perspectives will be discussed in this last chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section is reproduced with small variations, and with permission, from the original peer-reviewed article: T.M. Ostermayr et al., Review of Scientific Instruments, 89:013302, (2018). The article is published by the American Institute of Physics and licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

  2. 2.

    This section is reproduced with small variations, and with permission, from the original peer-reviewed article: T.M. Ostermayr et al., Review of Scientific Instruments, 89:013302, (2018). The article is published by the American Institute of Physics and licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

References

  1. Genoud G, et al (2011) Active control of the pointing of a multi-terawatt laser. Rev Sci Instrum 82(3):033102

    Article  ADS  Google Scholar 

  2. Gao Y, et al (2017) An automated, 0.5 Hz nano-foil target positioning system for intense laser plasma experiments. High Power Laser Sci Eng 5

    Google Scholar 

  3. Myatt J et al (2007) High-intensity laser interactions with mass-limited solid targets and implications for fast-ignition experiments on OMEGA EP. Phys Plasmas 14(5):056301

    Article  ADS  Google Scholar 

  4. Nishimura H, et al (2011) Energy transport and isochoric heating of a low-Z, reduced-mass target irradiated with a high intensity laser pulse. Phys Plasmas 18(2):022702

    Article  ADS  Google Scholar 

  5. Neumayer P et al (2009) Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons. High Energy Density Phys 5(4):244–244

    Article  ADS  Google Scholar 

  6. Theobald W, et al (2006) Hot surface ionic line emission and cold K-inner shell emission from petawatt-laser-irradiated Cu foil targets. Phys Plasmas 13(4):043102

    Article  ADS  Google Scholar 

  7. Ter-Avetisyan S et al (2012) Generation of a quasi-monoergetic proton beam from laser-irradiated sub-micron droplets. English. Phys Plasmas 19(7):073112

    Article  ADS  Google Scholar 

  8. Zeil K, et al (2014) Robust energy enhancement of ultrashort pulse laser accelerated protons from reduced mass targets. Plasma Phys Control Fusion 56:084004

    Article  ADS  Google Scholar 

  9. Morace A, et al (2013) Improved laser-to-proton conversion efficiency in isolated reduced mass targets. Appl Phys Lett 103(5):054102

    Article  ADS  Google Scholar 

  10. Nagel SR, et al (2015) Effect of the mounting membrane on shape in inertial cofinement fusion implosions. Phys Plasmas 22(2):022704

    Article  ADS  Google Scholar 

  11. Bulanov SS, et al (200) Accelerating monoenergetic protons from ultrathin foils by at-top laser pulses in the directed-Coulomb-explosion regime. Phys Rev E 78:026412

    Google Scholar 

  12. Yu TP, et al (2014) Dynamics of laser mass-limited foil interaction at ultra-high laser intensities. Phys Plasmas 21(5):053105

    Article  ADS  Google Scholar 

  13. Yu T-P, et al (2013) Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target. Phys Rev Lett 110:045001

    Google Scholar 

  14. Kane BE (2010) Levitated spinning graphene flakes in an electric quadrupole ion trap. English. Phys Rev B 82(11):115441

    Google Scholar 

  15. Friese MEJ et al (1996) Optical angular-momentum transfer to trapped absorbing particles. Phys Rev A 54(2):1593–1593

    Article  ADS  Google Scholar 

  16. Friese MEJ et al (1998) Optical alignment and spinning of laser trapped microscopic particles. Nature 394:348–350

    Article  ADS  Google Scholar 

  17. Beth RA (1936) Mechanical detection and measurement of the angular momentum of light. Phys Rev 50 :115–125

    Article  ADS  Google Scholar 

  18. Abbas MM et al (2004) Laboratory experiments on rotation and alignment of the analogs of interstellar dust grains by radiation. Astrophys J 614:781–795

    Article  ADS  Google Scholar 

  19. Kar S, et al (2012) Ion acceleration in multispecies targets driven by intense laser radiation pressure. Phys Rev Lett 109(18)

    Google Scholar 

  20. Jung D, et al (2011) Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light. Phys Rev Lett 107:115002

    Google Scholar 

  21. Steinke S, et al (2013) Stable laser-ion acceleration in the light sail regime. English. Phys Rev Spec Top Accel Beams 16(1):011303

    Google Scholar 

  22. Reinhardt S (2012) Detection of laser-accelerated protons. PhD thesis, LMU

    Google Scholar 

  23. Würl M, et al (2017) Experimental studies with two novel silicon detectors for the development of time-of-ight spectrometry of laser-accelerated proton beams. J Phys: Conf Ser 777(1):012018

    Google Scholar 

  24. Choi IW, et al (2009) Absolute calibration of a time-of-flight spectrometer and imaging plate for the characterization of laser-accelerated protons. Meas Sci Technol 20(11):115112

    Article  ADS  Google Scholar 

  25. Dromey B, et al (2015) Picosecond metrology of laser-driven proton bursts. Nat Commun 7:10642. Challenges Perspect 160(8)

    Google Scholar 

  26. Dover NP, et al (2017) Scintillator-based transverse proton beam profiler for laser-plasma ion sources. Rev Sci Instrum 88(7):073304

    Article  ADS  Google Scholar 

  27. Haffa D, et al (2017) Ion bunch energy acoustic tracing (I-BEAT). Submitted manuscript

    Google Scholar 

  28. Ostermayr TM, et al (2018) A transportable Paul-trap for levitation and accurate positioning of micron-scale particles in vacuum for laser-plasma experiments. Rev Sci Instrum 89:013302

    Google Scholar 

  29. Cardenas DE (2017) PhD thesis, Ludwig-Maximilians-Universität München

    Google Scholar 

  30. Cardenas DE, et al (2017) Relativistic nanophotonics in the sub-cycle regime. Submitted manuscript

    Google Scholar 

  31. Kiefer D, et al (2013) Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet. Nat Commun 4:1763

    Google Scholar 

  32. Ma WJ, et al (2014) Bright subcycle extreme ultraviolet bursts from a single dense relativistic electron sheet. Phys Rev Lett 113(23)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Ostermayr .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ostermayr, T. (2019). Challenges and Perspectives. In: Relativistically Intense Laser–Microplasma Interactions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-22208-6_8

Download citation

Publish with us

Policies and ethics