Skip to main content

A Laser-Driven Micro-source for Simultaneous Bi-modal Radiographic Imaging

  • Chapter
  • First Online:
Relativistically Intense Laser–Microplasma Interactions

Part of the book series: Springer Theses ((Springer Theses))

  • 274 Accesses

Abstract

After the investigations presented in the previous chapter, a natural step was to use micro-targets in imaging applications, exploiting their small source size, their large divergence and their unique mixed radiation field composed of ions and X-rays that are geometrically separated from laser and electron beams. The presented experiments were performed in 2016 at the Texas Petawatt laser using commercial tungsten needles [1] as targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    My contribution: I initiated the experiment and wrote the proposal. I planned the experiment and logistics. I executed the setup and experiment as principle investigator, supervising a team of 5 scientists (not counting TPW-staff), and organized the daily shot-plan. I also performed the data analysis and interpretation unless where stated explicitly otherwise.

  2. 2.

    Considering that each proton leaves a track of at least 1 \(\upmu \)m\(^2\) diameter to be observable.

  3. 3.

    By F. Englbrecht (at the chair of medical physics, Prof. Katia Parodi, LMU).

References

  1. Bruker, www.bruker.com

  2. Roth M et al (2002) Energetic ions generated by laser pulses: a detailed study on target properties. Phys Rev Spec Top Accel Beams 5(6):061301

    Article  ADS  Google Scholar 

  3. Smith SW (1997) The scientist and engineer’s guide to digital signal processing, 1st edn. California Technical Pub

    Google Scholar 

  4. Kneip S et al (2010) Bright spatially coherent synchrotron X-rays from a table-top source. Nat Phys 6(12):980983

    Article  Google Scholar 

  5. Guler N et al (2016) Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility. J Appl Phys 120(15):154901

    Article  ADS  Google Scholar 

  6. Izumi N et al (2006) Application of imaging plates to X-ray imaging and spectroscopy in laser plasma experiments (invited). Rev Sci Instrum 77(10):10E325

    Article  Google Scholar 

  7. Boutoux G et al (2016) Validation of modelled imaging plates sensitivity to 1–100 keV X-rays and spatial resolution characterisation for diagnostics for the “PETawatt Aquitaine Laser”. Rev Sci Instrum 87(4):043108

    Article  ADS  Google Scholar 

  8. Sidky EY et al (2005) A robust method of X-ray source spectrum estimation from transmission measurements: demonstrated on computer simulated, scatter-free transmission data. J Appl Phys 97(12):124701

    Article  ADS  Google Scholar 

  9. Meadowcroft AL, Bentley CD, Stott EN (2008) Evaluation of the sensitivity and fading characteristics of an image plate system for X-ray diagnostics. Rev Sci Instrum 79(11):113102

    Article  ADS  Google Scholar 

  10. Henke BL, Gullikson EM, Davis JC (1993) X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92. Atomic Data Nucl Data Tables 54(2):181–342

    Article  ADS  Google Scholar 

  11. Park H-S et al (2008) High-resolution 17–75 keV backlighters for high energy density experiments. Phys Plasmas 15(7):072705

    Article  ADS  Google Scholar 

  12. Yan J, Taewoo L, Rose-Petruck Christoph G (2003) Generation of ultrashort hard-X-ray pulses with tabletop laser systems at a 2-kHz repetition rate. J Opt Soc Am B 20(1):229–237

    Article  Google Scholar 

  13. Huddlestone RH, Leonard SL (1965) Plasma diagnostic techniques. Academic Press

    Google Scholar 

  14. Formvar/Venylec. http://www.2spi.com/category/film-polyvinyl-vinylec/. Retrieved 29 Sept 2017

  15. Wagner F et al (2016) Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets. Phys Rev Lett 116:205002

    Article  ADS  Google Scholar 

  16. Jong Kim I et al (2016) Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses. Phys Plasmas 23(7):070701

    Article  Google Scholar 

  17. Hegelich BM et al (Oct 2013) 160 MeV laser-accelerated protons from CH2 nanotargets for proton cancer therapy. ArXiv e-prints

    Google Scholar 

  18. Schwoerer H et al (2006) Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439(7075):445448

    Article  Google Scholar 

  19. Robinson APL, Bell AR, Kingham RJ (2006) Effect of target composition on proton energy spectra in ultraintense laser-solid interactions. Phys Rev Lett 96:035005

    Article  ADS  Google Scholar 

  20. Zulick C et al (2016) Target surface area effects on hot electron dynamics from high intensity laser-plasma interactions. New J Phys 18(6):063020

    Article  Google Scholar 

  21. Borghesi M et al (2004) Multi-MeV proton source investigations in ultraintense laser-foil interactions. Phys Rev Lett 92(5):055003

    Article  ADS  Google Scholar 

  22. Sokollik T et al (2009) Directional laser-driven ion acceleration from microspheres. Phys Rev Lett 103:135003

    Article  ADS  Google Scholar 

  23. Borghesi M et al (2003) Measurement of highly transient electrical charging following high-intensity laser-solid interaction. Appl Phys Lett 82(10):1529–1531

    Article  ADS  Google Scholar 

  24. Quinn K et al (2009) Laser-driven ultrafast field propagation on solid surfaces. Phys Rev Lett 102:194801

    Article  ADS  Google Scholar 

  25. Faenov AY et al (2015) Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser. Sci Rep 5:13436

    Article  ADS  Google Scholar 

  26. Murnane MM, Kapteyn HC, Falcone RW (1989) High-density plasmas produced by ultrafast laser pulses. Phys Rev Lett 62(2):155–158

    Article  ADS  Google Scholar 

  27. Pfeifer T, Spielmann C, Gerber G (2006) Femtosecond X-ray science. Rep Prog Phys 69(2):443505

    Google Scholar 

  28. Brambrink E et al (2009) Direct density measurement of shock-compressed iron using hard X-rays generated by a short laser pulse. Phys Rev E 80(5):056407

    Article  ADS  Google Scholar 

  29. Parameters of the linear coherent light source, Mar 2017

    Google Scholar 

  30. Larsson DH et al (2011) A 24 keV liquid-metal-jet X-ray source for biomedical applications. Rev Sci Instrum 82(12):123701

    Article  ADS  Google Scholar 

  31. Otendal M et al (2008) A 9 keV electron-impact liquid-gallium-jet X-ray source. Rev Sci Instrum 79(1):016102

    Article  ADS  Google Scholar 

  32. Shelkovenko T, Pikuz S, Hammer D (2015) X-pinches as broadband sources of X-rays for radiography. J Biomed Sci Eng 08(11):747–755

    Article  Google Scholar 

  33. Zucchini F et al (2015) Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies. Rev Sci Instrum 86(3):033507

    Article  ADS  Google Scholar 

  34. Lancaster KL et al (2007) Measurements of energy transport patterns in solid density laser plasma interactions at intensities of \(5 \times 10^{20}\,\)W cm \(^{-2}\). Phys Rev Lett 98(12):125002

    Article  ADS  Google Scholar 

  35. Stephens RB et al (2004) K \(\alpha \) fluorescence measurement of relativistic electron transport in the context of fast ignition. Phys Rev E 69(6):066414

    Article  ADS  Google Scholar 

  36. Wenz J et al (2015) Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source. Nat Commun 6:7568

    Article  ADS  Google Scholar 

  37. Daido H, Nishiuchi M, Pirozhkov AS (2012) Review of laser-driven ion sources and their applications. Rep Prog Phys 75(5):056401

    Article  ADS  Google Scholar 

  38. Dollinger G et al (2009) Nanosecond pulsed proton microbeam. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 267(12):2008–2012 Proceedings of the 11th International Conference on Nuclear Microprobe Technology and Applications and the 3rd International Workshop on Proton Beam Writing

    Google Scholar 

  39. Orimo S et al (2007) Simultaneous proton and X-ray imaging with femtosecond intense laser driven plasma source. Jpn J Appl Phys 46(9A):5853–5858

    Article  ADS  Google Scholar 

  40. Nishiuchi M et al (2008) Laser-driven proton sources and their applications: femtosecond intense laser plasma driven simultaneous proton and X-ray imaging. In: Journal of physics: conference series, vol 112, p 042036

    Google Scholar 

  41. Steward VW, Koehler AM (1973) Proton radiographic detection of strokes. Nature 245(5419):38

    Article  ADS  Google Scholar 

  42. Steward VW, Koehler AM (1973) Proton beam radiography in tumor detection. Science 179(4076):913–914

    Article  ADS  Google Scholar 

  43. Koehler AM (1968) Proton radiography. Science 160(3825):303–304

    Article  ADS  Google Scholar 

  44. Schulte R et al (2004) Conceptual design of a proton computed tomography system for applications in proton radiation therapy. IEEE Trans Nucl Sci 51(3):866–872

    Article  ADS  Google Scholar 

  45. Besemer A, Paganetti H, Bednarz B (2013) The clinical impact of uncertainties in the mean excitation energy of human tissues during proton therapy. Phys Med Biol 58(4):887

    Article  Google Scholar 

  46. Zhang R, Newhauser WD (2009) Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation. Phys Med Biol 54(6):1383

    Article  Google Scholar 

  47. Bushberg JT et al (2012) The essential physics of medical imaging, 3rd edn. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  48. Böhlen TT et al (2014) The FLUKA code: developments and challenges for high energy and medical applications. Nucl Data Sheets 120:211–214

    Article  ADS  Google Scholar 

  49. Ferrari A et al (2005) FLUKA: a multi particle transport code. CERN-2005-10, INFN/TC-05/11, SLAC-R-773

    Google Scholar 

  50. Telsemeyer J, Jäkel O, Martisikova M (2012) Quantitative carbon ion beam radiography and tomography with a at-panel detector. Phys Med Biol 57(23):7957

    Article  Google Scholar 

  51. Ryu H et al (2008) Density and spatial resolutions of proton radiography using a range modulation technique. Phys Med Biol 53:5461–5468

    Article  Google Scholar 

  52. Testa M et al (2013) Proton radiography and proton computed tomography based on time-resolved dose measurements. Phys Med Biol 58:8215–8233

    Article  Google Scholar 

  53. Jeong TW et al (2017) CR-39 track detector for multi-MeV ion spectroscopy. Sci Rep 7(1):2152

    Article  ADS  Google Scholar 

  54. Sinenian N et al (2011) The response of CR-39 nuclear track detector to 1–9 MeV protons. Rev Sci Instrum 82(10):103303

    Article  ADS  Google Scholar 

  55. Gautier DC et al (2008) A simple apparatus for quick qualitative analysis of CR39 nuclear track detectors. Rev Sci Instrum 79(10):10E536

    Article  Google Scholar 

  56. Paudel Y et al (2011) CR39 imaging technique for quick track analysis of particles generated in high-intensity laser target interactions. J Instrum 6(08):T08004–T08004

    Article  Google Scholar 

  57. Newhauser WD, Zhang R (2015) The physics of proton therapy. Phys Med Biol 60(8):R155

    Article  ADS  Google Scholar 

  58. Borghesi M et al (2001) Proton imaging: a diagnostic for inertial confinement fusion/fast ignitor studies. Plasma Phys Control Fusion 43(12A):A267–A276

    Article  Google Scholar 

  59. Ruhl H Private communication

    Google Scholar 

  60. Raytchev M, Seco J (2013) Proton radiography in three dimensions: a proof of principle of a new technique. Med Phys 40(10). 101917, 101917-n/a

    Article  ADS  Google Scholar 

  61. Davis TJ et al (1995) Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373(6515):595598

    Article  Google Scholar 

  62. Wilkins SW et al (1996) Phase-contrast imaging using polychromatic hard X-rays. Nature 384(6607):335338

    Article  Google Scholar 

  63. Franz P et al (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2(4):258–261

    Article  Google Scholar 

  64. Cloetens P et al (1997) Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J Appl Phys 81(9):5878

    Article  ADS  Google Scholar 

  65. Diemoz PC et al (2013) X-ray phase-contrast imaging with nanoradian angular resolution. Phys Rev Lett 110:138105

    Article  ADS  Google Scholar 

  66. Gureyev TE et al (2000) Quantitative methods in phase-contrast X-ray imaging. J Digit Imaging 13(1):121–126

    Article  Google Scholar 

  67. Miao H et al (2015) Enhancing tabletop X-ray phase contrast imaging with nano-fabrication. Sci Rep 5:13581 EP

    Google Scholar 

  68. Houxun M et al (2016) A universal moire effect and application in X-ray phasecontrast imaging. Nat Phys 12(9):830–834

    Article  Google Scholar 

  69. Langer M et al (2008) Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography. Med Phys 35(10):4556–4566

    Article  Google Scholar 

  70. David C et al (2002) Differential X-ray phase contrast imaging using a shearing interferometer. Appl Phys Lett 81(17):3287–3289

    Article  ADS  Google Scholar 

  71. Munro PRT et al (2012) Phase and absorption retrieval using incoherent X-ray sources. Proc Natl Acad Sci 109(35):13922–13927

    Article  ADS  Google Scholar 

  72. Mayo SC et al (2002) Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging. J Microsc 207(Pt 2):79–96

    Article  MathSciNet  Google Scholar 

  73. Hanson KM et al (1982) Proton computed tomography of human specimens. Phys Med Biol 27(1):25

    Article  Google Scholar 

  74. Hernáandez LM (2017) Low-dose ion-based transmission radiography and tomography for optimization of carbon ion-beam therapy. PhD thesis. Ludwig- Maximilians-Universität Müunchen

    Google Scholar 

  75. Göde S et al (2017) Relativistic electron streaming instabilities modulate proton beams accelerated in laser-plasma interactions. Phys Rev Lett 118:194801

    Article  ADS  Google Scholar 

  76. Ter-Avetisyan S et al (2012) Generation of a quasi-monoergetic proton beam from laser-irradiated sub-micron droplets. Phys Plasmas 19(7):073112

    Article  ADS  Google Scholar 

  77. Gao Y et al (2017) An automated, 0.5 Hz nano-foil target positioning system for intense laser plasma experiments. High Power Laser Sci Eng 5

    Google Scholar 

  78. Noaman-ul-Haq M et al (2017) Statistical analysis of laser driven protons using a high-repetition-rate tape drive target system. Phys Rev Accel Beams 20(4):041301

    Article  ADS  Google Scholar 

  79. Reinhardt S (2012) Detection of laser-accelerated protons. PhD thesis. LMU

    Google Scholar 

  80. M Würl et al (2017) Experimental studies with two novel silicon detectors for the development of time-of-flight spectrometry of laser-accelerated proton beams. In: Journal of physics: conference series, vol 777, no 1, p 012018

    Google Scholar 

  81. Choi IW et al (2009) Absolute calibration of a time-of-flight spectrometer and imaging plate for the characterization of laser-accelerated protons. Meas Sci Technol 20(11):115112

    Article  ADS  Google Scholar 

  82. Dromey B et al (2015) Picosecond metrology of laser-driven proton bursts. Nat Commun 7:10642

    Article  ADS  Google Scholar 

  83. Dover NP et al (2017) Scintillator-based transverse proton beam profiler for laser-plasma ion sources. Rev Sci Instrum 88(7):073304

    Article  ADS  Google Scholar 

  84. Brambrink E et al (2009) X-ray source studies for radiography of dense matter. Phys Plasmas 16(3):033101

    Article  ADS  Google Scholar 

  85. Sokollik T et al (2008) Transient electric fields in laser plasmas observed by proton streak deflectometry. Appl Phys Lett 92(9):091503

    Article  ADS  Google Scholar 

  86. Abicht F et al (2014) Tracing ultrafast dynamics of strong fields at plasma-vacuum interfaces with longitudinal proton probing. Appl Phys Lett 105(3):034101

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Ostermayr .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ostermayr, T. (2019). A Laser-Driven Micro-source for Simultaneous Bi-modal Radiographic Imaging. In: Relativistically Intense Laser–Microplasma Interactions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-22208-6_6

Download citation

Publish with us

Policies and ethics