Advertisement

Estimating Turbulence Kinetic Energy Dissipation Rates in Atmospheric Flows: A Priori Study

  • Emmanuel O. AkinlabiEmail author
  • Marta Wacławczyk
  • Juan Pedro Mellado
  • Szymon P. Malinowski
Conference paper
  • 344 Downloads
Part of the Springer Proceedings in Physics book series (SPPHY, volume 226)

Abstract

In this work, Direct Numerical Simulations (DNS) of atmospheric convective boundary layer flow is used to test various approaches to estimate turbulence kinetic energy dissipation rate (EDR) \(\epsilon \) from one-dimensional (1D) velocity signals. Results of these estimates are compared with “true” DNS values of \(\epsilon \). We focus on methods of EDR retrievals proposed recently in Wacławczyk et al. Atmos. Meas. Tech. 10, 2017. We test these methods and show that they provide a valuable complement to standard approaches. Another goal is to investigate how the presence of anisotropy due to buoyancy affect the various retrieval techniques of \(\epsilon \).

Notes

Acknowledgements

This work received funding from the European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Actions, Grant Agreement No. 675675. MW and SPM acknowledge matching fund from the Polish Ministry of Science and Higher Education No. 341832/PnH/2016.

References

  1. 1.
    E.O. Akinlabi, M. Wacławczyk, J.P. Mellado, S.P. Malinowski, Estimating turbulence kinetic energy dissipation rates in numerically simulated stratocumulus cloud-top mixing layer: evaluation of different methods. J. Atmos. Sci. 76, 1471–1488 (2019).  https://doi.org/10.1175/JAS-D-18-0146.1CrossRefGoogle Scholar
  2. 2.
    J.M. Kopeć, D. Kwiatkowski, S. de Haan, S.P. Malinowski, Retrieving atmospheric turbulence information from regular commercial aircraft using MODE-S and ADS-B. Atmos. Meas. Tech. 9, 225–2265 (2016).  https://doi.org/10.5194/amt-9-2253-2016CrossRefGoogle Scholar
  3. 3.
    A.N. Kolmogorov, Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 434, 15–17 (1941)MathSciNetzbMATHGoogle Scholar
  4. 4.
    S.P. Malinowski et al., Physics of stratocumulus top (POST): turbulent mixing across capping inversion. Atmos. Chem. Phys. 13, 12 171–12 186.  https://doi.org/10.5194/587acp-13-12171-2013
  5. 5.
    J.P. Mellado, C.C. van Heerwaarden, J.R. Garcia, Near-surface effects of free atmosphere stratification in free convection. Bound.-Layer Meteorol. 159, 69–95 (2016)CrossRefGoogle Scholar
  6. 6.
    S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)Google Scholar
  7. 7.
    K. Sreenivasan, A. Prabhu, R. Narasimha, Zero-crossings in turbulent signals. J. Fluid Mech. 137, 251–272 (1983).  https://doi.org/10.5194/amt-9-2253-2016CrossRefGoogle Scholar
  8. 8.
    M. Wacławczyk, Y.-F. Ma, J.M. Kopeć, S.P. Malinowski, Novel approaches to estimating turbulent kinetic energy dissipation rate from low and moderate resolution velocity fluctuation time series. Atmos. Meas. Tech. 10, 4573–4585 (2017).  https://doi.org/10.5194/amt-10-4573-2017CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Emmanuel O. Akinlabi
    • 1
    Email author
  • Marta Wacławczyk
    • 1
  • Juan Pedro Mellado
    • 2
  • Szymon P. Malinowski
    • 1
  1. 1.Faculty of Physics, Institute of GeophysicsUniversity of WarsawWarsawPoland
  2. 2.Max-Planck Institute for MeteorologyHamburgGermany

Personalised recommendations