Skip to main content

The Use of Active Grids in Experimental Facilities

  • Conference paper
  • First Online:
Progress in Turbulence VIII (iTi 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 226))

Included in the following conference series:

  • 860 Accesses

Abstract

Active grids allow for the turbulence in experimental facilities to be tailored through a broad range of turbulence intensities and Reynolds numbers. This work provides an overview of the active grids that presently exist around the globe as well as advances in turbulence research that are a result of their use. Focus is placed on homogeneous turbulent flows, turbulent boundary layers, and model testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Bodenschatz, G.P. Bewley, H. Nobach, M. Sinhuber, H. Xu, Variable density turbulence tunnel facility. Rev. Sci. Inst. 85(093908) (2014)

    Article  Google Scholar 

  2. R.B. Cal, J. Lebrón, L. Castillo, H.S. Kang, C. Meneveau, Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. J. Renew. Sustain. Energy 2(013106) (2010)

    Article  Google Scholar 

  3. H.E. Cekli, W. van de Water, Tailoring turbulence with an active grid. Exp. Fluids 49, 409–416 (2010)

    Article  Google Scholar 

  4. A.H. Danesh-Yazdi, O. Goushcha, N. Elvin, Y. Andrepoulos, Fluidic energy harvesting beams in grid turbulence. Exp. Fluids 56, 161 (2015)

    Article  Google Scholar 

  5. E. Dogan, R. Hanson, B. Ganapathisubramani, Interactions of large-scale free-stream turbulence with turbulent boundary layers. J. Fluid Mech. 802, 79–107 (2016)

    Article  MathSciNet  Google Scholar 

  6. E. Dogan, R.J. Hearst, B. Ganapathisubramani, Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence. Phil. Trans. R. Soc. A 375(2089), 20160091 (2017)

    Article  Google Scholar 

  7. D. Fries, B.A. Ochs, D. Ranjan, S. Menon, Hot-wire and PIV characterisation of a novel small-scale turbulent channel flow facility developed to study premixed expanding flames. J. Turbul. 18(11), 1081–1103 (2017)

    Article  MathSciNet  Google Scholar 

  8. K.P. Griffin, N.J. Wei, E. Bodenschatz, G. Bewley, Control of long-range correlations in turbulence. Exp. Fluids 60, 55 (2019). https://link.springer.com/article/10.1007%2Fs00348-019-2698-1

  9. R.J. Hearst, B. Ganapathisubramani, Tailoring incoming shear and turbulence profiles for lab-scale wind turbines. Wind Energy 20, 2021–2035 (2017)

    Article  Google Scholar 

  10. R.J. Hearst, P. Lavoie, The effect of active grid initial conditions on high Reynolds number turbulence. Exp. Fluids 56(10), 185 (2015)

    Article  Google Scholar 

  11. R.J. Hearst, G. Gomit, B. Ganapathisubramani, Effect of turbulence on the wake of a wall-mounted cube. J. Fluid Mech. 804, 513–530 (2016)

    Article  MathSciNet  Google Scholar 

  12. R.J. Hearst, E. Dogan, B. Ganapathisubramani, Robust features of a turbulent boundary layer subjected to high-intensity free-stream turbulence. J. Fluid Mech. 851, 416–435 (2018)

    Article  MathSciNet  Google Scholar 

  13. H. Kang, S. Chester, C. Meneveau, Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J. Fluid Mech. 480, 129–160 (2003)

    Article  MathSciNet  Google Scholar 

  14. P. Knebel, A. Kittel, J. Peinke, Atmospheric wind field conditions generated by active grids. Exp. Fluids 51, 471–481 (2011)

    Article  Google Scholar 

  15. L. Kröger, J. Frederik, J.W. van Wingerden, J. Peinke, M. Hölling, Generation of user defined turbulent inflow conditions by an active grid for validation experiments. J. Phys: Conf. Ser. 1037, 052002 (2018)

    Google Scholar 

  16. J.V. Larssen, W.J. Devenport, On the generation of large-scale homogeneous turbulence. Exp. Fluids 50, 1207–1223 (2011)

    Article  Google Scholar 

  17. A.M. Lawrence, A. Vinod, A. Banerjee, Effect of free-stream turbulence on the loads experienced by a marine hydrokinetic turbine, in Proceedings ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE2016-68395 (2016)

    Google Scholar 

  18. H. Makita, Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn. Res. 8, 53–64 (1991)

    Article  Google Scholar 

  19. F. Marti, O. Martinez, D. Mazo, J. Garman, D. Dunn-Rankin, Evaporation of a droplet larger than the Kolmogorov length scale immersed in a relative mean flow. Int. J. Multiph. Flow 88, 63–68 (2017)

    Article  Google Scholar 

  20. T. Michioka, A. Sato, K. Sada, Wind-tunnel experiments for gas dispersion in an atmospheric boundary layer with large-scale turbulent motion. Boundary-Layer Meteorol. 141, 35–51 (2011)

    Article  Google Scholar 

  21. I.A. Mulla, R. Sampath, S.R. Chakravarthy, Interaction of lean premixed flame with active grid generated turbulence. Heat Mass Trans. 1–13 (2018)

    Google Scholar 

  22. L. Mydlarski, A turbulent quarter century of active grids: from Makita (1991) to the present. Fluid Dyn. Res. 49(061401) (2017)

    Article  MathSciNet  Google Scholar 

  23. L. Mydlarski, Z. Warhaft, On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331–368 (1996)

    Article  Google Scholar 

  24. L. Mydlarski, Z. Warhaft, Passive scalar statistics in high-Péclet-number grid turbulence. J. Fluid Mech. 358, 135075 (1998)

    Article  Google Scholar 

  25. M. Obligado, T. Teitelbaum, A. Cartellier, P. Mininni, M. Bourgoin, Preferential concentration of heavy particles in turbulence. J. Turbul. 15(5), 293–310 (2014)

    Article  Google Scholar 

  26. R. Poorte, A. Biesheuvel, Experiments on the motion of gas bubbles in turbulence generated by an active grid. J. Fluid Mech. 461, 127–154 (2002)

    Article  Google Scholar 

  27. D.B. Quinn, A. Watts, T. Nagle, D. Lentink, A new low-turbulence wind tunnel for animal and small vehicle flight experiments. R. Soc. Open Sci. 4, 160960 (2017)

    Article  Google Scholar 

  28. S. Rockel, J. Peinke, M. Hölling, R.B. Cal, Dynamic wake development of a floating wind turbine in free pitch motion subjected to turbulent inflow generated with an active grid. Renew. Energy 112, 1–16 (2017)

    Article  Google Scholar 

  29. N. Sharp, S. Neuscamman, Z. Warhaft, Effects of large-scale free stream turbulence on a turbulent boundary layer. Phys. Fluids 21(095105) (2009)

    Article  Google Scholar 

  30. C.S. Shet, M.R. Cholemari, S.V. Veeravalli, Eurleria spatial and temperal autocorrelations: assessment of Taylor’s hypothesis and a model. J. Turbul. 18(12), 1105–1119 (2017)

    Article  Google Scholar 

  31. T. Skeledzic, J. Krauss, H. Lienhart, O. Ertunc, J. Jovanovic, Characterization of turbulence generated by an active grid with individually controllable paddles. In: A. Dillmann, G. Heller, E. Krämer, C. Wagner, S. Bansmer, R. Radespiel, R. Semaan (eds.) New Results in Numerical and Experimental Fluid Mechanics XI, vol. 136. (Springer, Berlin, 2018), pp. 105–114

    Google Scholar 

  32. M.J. Sytsma, L. Ukeiley, Mean loads from wind-tunnel turbulence on low-aspect-ratio flat plates. J. Aircraft 50(3), 863–870 (2013)

    Article  Google Scholar 

  33. M. Talavera, F. Shu, Experimental study of turbulence intensity influence on wind turbine performance and wake recovery in a low-speed wind tunnel. Renew. Energy 109, 363–371 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

I thank the organising committee of the iTi conference for inviting me to deliver the talk upon which this overview is based. I would also like to thank the co-authors of my previous active grid campaigns (P. Lavoie, B. Ganapathisubramani, E. Dogan and G. Gomit) for their work, input, and support throughout the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jason Hearst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hearst, R.J. (2019). The Use of Active Grids in Experimental Facilities. In: Örlü, R., Talamelli, A., Peinke, J., Oberlack, M. (eds) Progress in Turbulence VIII. iTi 2018. Springer Proceedings in Physics, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-030-22196-6_27

Download citation

Publish with us

Policies and ethics