Sublimation and Vapor Deposition

  • Amir FaghriEmail author
  • Yuwen Zhang


Solid–vapor phase change, including sublimation and vapor deposition, is presented in this chapter. The discussion begins with a brief overview of solid–vapor phase change and proceeds to detailed analyses of sublimation with and without chemical reaction as well as chemical vapor deposition.

Supplementary material


  1. Bauerle, D. (1996). Laser processing and chemistry. New York, NY: Springer.CrossRefGoogle Scholar
  2. Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2006). Transport phenomena (2nd ed.). New York: Wiley. (Revised).Google Scholar
  3. Conde, O., Kar, A., & Mazumder, J. (1992). Laser chemical vapor deposition of TiN Dot: A comparison of theoretical and experimental results. Journal of Applied Physics, 72, 754–761.CrossRefGoogle Scholar
  4. Eckert, E. R. G., & Goldstein, R. J. (1976). Measurement in heat transfer. New York, NY: McGraw-Hill.Google Scholar
  5. Elyukhin, V. A., Garcia-Salgado, G., & Pena-Sierra, R. (2002). Thermodynamic model for low temperature metalorganic chemical vapor deposition of GaN. Journal of Applied Physics, 91, 9091–9094.CrossRefGoogle Scholar
  6. Evans, G., & Greif, R. (1987). A numerical model of the flow and heat transfer in a rotating disk chemical vapor deposition reactor. Journal of Heat Transfer, 109, 928–935.CrossRefGoogle Scholar
  7. Faghri, A., Zhang, Y., & Howell, J. R. (2010). Advanced heat and mass transfer. Columbia, MO: Global Digital Press.Google Scholar
  8. Glassman, I., & Yetter, R. A. (2008). Combustion (4th ed.). Burlington, MA: Elsevier.Google Scholar
  9. Herring, R. B. (1990). Silicon epitaxy. In W. C. O’Mara, R. B. Herring, & L. P. Hunt (Eds.), Handbook of semiconductor silicon technology (pp. 258–336). Park Ridge, NJ: Noyes Publications.Google Scholar
  10. Jakubenas, K. J., Birmingham, B., Harrison, S., Crocker, J., Shaarawi, M.S., Tompkins, J. V., et al. (1997). Recent development in SALD and SALDVI. In Proceedings of 7th International Conference on Rapid Prototyping, San Francisco, CA.Google Scholar
  11. Jensen, K. F., Einset, E. O., & Fotiadis, D. I. (1991). Flow phenomena in chemical vapor deposition of thin films. Annual Review of Fluid Mechanics, 23, 197–232.CrossRefGoogle Scholar
  12. Kaviany, M. (2001). Principles of convective heat transfer (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  13. Kays, W. M., Crawford, M. E., & Weigand, B. (2004). Convective heat transfer (4th ed.). New York, NY: McGraw-Hill.Google Scholar
  14. Kurosaki, Y. (1973). Coupled heat and mass transfer in a flow between parallel flat plate (Uniform heat flux). Journal of the Japan Society of Mechanical Engineers, Part B, 39, 2512–2521. (in Japanese).Google Scholar
  15. Kurosaki, Y. (1974). Coupled heat-mass transfer of a flat plate with uniform heat flux in a laminar parallel flow. Journal of the Japan Society of Mechanical Engineers, Part B, 40, 1066–1072. (in Japanese).Google Scholar
  16. Lee, Y. L., Tompkins, J. V., Sanchez, J. M., & Marcus, H. L. (1995). Deposition rate of silicon carbide by selected area laser deposition. Proceedings of Solid Freeform Fabrication Symposium, 1995, 433–439.Google Scholar
  17. Mahajan, R. L. (1996). Transport phenomena in chemical vapor-deposition systems. In Advances in heat transfer. San Diego, CA: Academic Press.Google Scholar
  18. Marcus, H. L., Zong, G., & Subramanian, P. K. (1993). Residual stresses in laser processed solid freeform fabrication, residual stresses in composites. In E. V. Barrera & I. Dutta (Eds.), Measurement, modeling and effect on thermomechanical properties (pp. 257–271). TMS.Google Scholar
  19. Mazumder, J., & Kar, A. (1995). Theory and application of laser chemical vapor deposition. New York, NY: Plenum Publishing Co.CrossRefGoogle Scholar
  20. Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Washington, DC: Hemisphere.zbMATHGoogle Scholar
  21. Powell, C., Blocher, M., & Oxley, J. (1966). Vapor deposition. New York: Wiley.CrossRefGoogle Scholar
  22. Sivaram, S. (1995). Chemical vapor deposition: Thermal and plasma deposition of electronic materials. Bordrecht, Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
  23. Sun, L., Jakubenas, K. J., Crocker, J. E., Harrison, S., Shaw, L. L., & Marcus, H. L. (1998). In situ thermocouples in micro-components fabricated using SALD/SALDVI techniques: II evaluation of processing parameters. Materials and Manufacturing Processes, 13, 883–907.CrossRefGoogle Scholar
  24. Taylor, C. A., Wayne, M. F., & Chiu, W. K. S. (2004). Microstructural characterization of thin carbon films deposited from hydrocarbon mixtures. Surface & Coatings Technology, 182, 131–137.CrossRefGoogle Scholar
  25. Ueda, O. (1996). Reliability and degradation of III-V optical devices. Boston: Artech House Inc.Google Scholar
  26. Van Doormaal, J. P., & Raithby, G. D. (1984). Enhancements of the simple method for predicting incompressible fluid flows. Numerical Heat Transfer, 7, 147–163.zbMATHGoogle Scholar
  27. Versteeg, V. A., Avedisian, C. T., & Raj, R. (1995). Metalorganic chemical vapor deposition by pulsed liquid injection using an ultrasonic nozzle: Titanium dioxide on sapphire from titanium (IV) isopropoxide. Journal of the American Ceramic Society, 78, 2763–2768.CrossRefGoogle Scholar
  28. Zhang, Y. (2003). Quasi-steady state natural convection in laser chemical vapor deposition with a moving laser beam. Journal of Heat Transfer, 125, 429–437.CrossRefGoogle Scholar
  29. Zhang, Y. (2004). A simulation-based correlation of cross-sectional area of the thin film produced by laser chemical vapor deposition with a moving laser beam. Journal of Manufacturing Science and Engineering, 126, 796–800.CrossRefGoogle Scholar
  30. Zhang, Y., & Chen, Z. Q. (1990). Analytical solution of coupled laminar heat-mass transfer inside a tube with adiabatic external wall. In Proceedings of the 3rd National Interuniversity Conference on Engineering Thermophysics (pp. 341–345). Xi’an Jiaotong University Press, Xi’an, China.Google Scholar
  31. Zhang, Y., Chen, Z. Q., & Chen, M. (1996). Local non-similarity solution of coupled heat-mass transfer of a flat plate with uniform heat flux in a laminar parallel flow. Journal of Thermal Science, 5, 112–116.CrossRefGoogle Scholar
  32. Zhang, Y., & Faghri, A. (2000). Thermal modeling of selective area laser deposition of titanium nitride on a finite slab with stationary and moving laser beams. International Journal of Heat and Mass Transfer, 43, 3835–3846.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations