Fundamentals of Multiphase Heat Transfer and Flow pp 323-353 | Cite as

# Sublimation and Vapor Deposition

Chapter

First Online:

## Abstract

Solid–vapor phase change, including sublimation and vapor deposition, is presented in this chapter. The discussion begins with a brief overview of solid–vapor phase change and proceeds to detailed analyses of sublimation with and without chemical reaction as well as chemical vapor deposition.

## Supplementary material

## References

- Bauerle, D. (1996).
*Laser processing and chemistry*. New York, NY: Springer.CrossRefGoogle Scholar - Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2006).
*Transport phenomena*(2nd ed.). New York: Wiley. (Revised).Google Scholar - Conde, O., Kar, A., & Mazumder, J. (1992). Laser chemical vapor deposition of TiN Dot: A comparison of theoretical and experimental results.
*Journal of Applied Physics,**72,*754–761.CrossRefGoogle Scholar - Eckert, E. R. G., & Goldstein, R. J. (1976).
*Measurement in heat transfer*. New York, NY: McGraw-Hill.Google Scholar - Elyukhin, V. A., Garcia-Salgado, G., & Pena-Sierra, R. (2002). Thermodynamic model for low temperature metalorganic chemical vapor deposition of GaN.
*Journal of Applied Physics,**91,*9091–9094.CrossRefGoogle Scholar - Evans, G., & Greif, R. (1987). A numerical model of the flow and heat transfer in a rotating disk chemical vapor deposition reactor.
*Journal of Heat Transfer,**109,*928–935.CrossRefGoogle Scholar - Faghri, A., Zhang, Y., & Howell, J. R. (2010).
*Advanced heat and mass transfer*. Columbia, MO: Global Digital Press.Google Scholar - Glassman, I., & Yetter, R. A. (2008).
*Combustion*(4th ed.). Burlington, MA: Elsevier.Google Scholar - Herring, R. B. (1990). Silicon epitaxy. In W. C. O’Mara, R. B. Herring, & L. P. Hunt (Eds.),
*Handbook of semiconductor silicon technology*(pp. 258–336). Park Ridge, NJ: Noyes Publications.Google Scholar - Jakubenas, K. J., Birmingham, B., Harrison, S., Crocker, J., Shaarawi, M.S., Tompkins, J. V., et al. (1997). Recent development in SALD and SALDVI. In
*Proceedings of 7th International Conference on Rapid Prototyping*, San Francisco, CA.Google Scholar - Jensen, K. F., Einset, E. O., & Fotiadis, D. I. (1991). Flow phenomena in chemical vapor deposition of thin films.
*Annual Review of Fluid Mechanics,**23,*197–232.CrossRefGoogle Scholar - Kaviany, M. (2001).
*Principles of convective heat transfer*(2nd ed.). New York: Springer.CrossRefGoogle Scholar - Kays, W. M., Crawford, M. E., & Weigand, B. (2004).
*Convective heat transfer*(4th ed.). New York, NY: McGraw-Hill.Google Scholar - Kurosaki, Y. (1973). Coupled heat and mass transfer in a flow between parallel flat plate (Uniform heat flux).
*Journal of the Japan Society of Mechanical Engineers, Part B,**39,*2512–2521. (in Japanese).Google Scholar - Kurosaki, Y. (1974). Coupled heat-mass transfer of a flat plate with uniform heat flux in a laminar parallel flow.
*Journal of the Japan Society of Mechanical Engineers, Part B,**40,*1066–1072. (in Japanese).Google Scholar - Lee, Y. L., Tompkins, J. V., Sanchez, J. M., & Marcus, H. L. (1995). Deposition rate of silicon carbide by selected area laser deposition.
*Proceedings of Solid Freeform Fabrication Symposium,**1995,*433–439.Google Scholar - Mahajan, R. L. (1996). Transport phenomena in chemical vapor-deposition systems. In
*Advances in heat transfer*. San Diego, CA: Academic Press.Google Scholar - Marcus, H. L., Zong, G., & Subramanian, P. K. (1993). Residual stresses in laser processed solid freeform fabrication, residual stresses in composites. In E. V. Barrera & I. Dutta (Eds.),
*Measurement, modeling and effect on thermomechanical properties*(pp. 257–271). TMS.Google Scholar - Mazumder, J., & Kar, A. (1995).
*Theory and application of laser chemical vapor deposition*. New York, NY: Plenum Publishing Co.CrossRefGoogle Scholar - Patankar, S. V. (1980).
*Numerical heat transfer and fluid flow*. Washington, DC: Hemisphere.zbMATHGoogle Scholar - Powell, C., Blocher, M., & Oxley, J. (1966).
*Vapor deposition*. New York: Wiley.CrossRefGoogle Scholar - Sivaram, S. (1995).
*Chemical vapor deposition: Thermal and plasma deposition of electronic materials*. Bordrecht, Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar - Sun, L., Jakubenas, K. J., Crocker, J. E., Harrison, S., Shaw, L. L., & Marcus, H. L. (1998). In situ thermocouples in micro-components fabricated using SALD/SALDVI techniques: II evaluation of processing parameters.
*Materials and Manufacturing Processes,**13,*883–907.CrossRefGoogle Scholar - Taylor, C. A., Wayne, M. F., & Chiu, W. K. S. (2004). Microstructural characterization of thin carbon films deposited from hydrocarbon mixtures.
*Surface & Coatings Technology,**182,*131–137.CrossRefGoogle Scholar - Ueda, O. (1996).
*Reliability and degradation of III-V optical devices*. Boston: Artech House Inc.Google Scholar - Van Doormaal, J. P., & Raithby, G. D. (1984). Enhancements of the simple method for predicting incompressible fluid flows.
*Numerical Heat Transfer,**7,*147–163.zbMATHGoogle Scholar - Versteeg, V. A., Avedisian, C. T., & Raj, R. (1995). Metalorganic chemical vapor deposition by pulsed liquid injection using an ultrasonic nozzle: Titanium dioxide on sapphire from titanium (IV) isopropoxide.
*Journal of the American Ceramic Society,**78,*2763–2768.CrossRefGoogle Scholar - Zhang, Y. (2003). Quasi-steady state natural convection in laser chemical vapor deposition with a moving laser beam.
*Journal of Heat Transfer,**125,*429–437.CrossRefGoogle Scholar - Zhang, Y. (2004). A simulation-based correlation of cross-sectional area of the thin film produced by laser chemical vapor deposition with a moving laser beam.
*Journal of Manufacturing Science and Engineering,**126,*796–800.CrossRefGoogle Scholar - Zhang, Y., & Chen, Z. Q. (1990). Analytical solution of coupled laminar heat-mass transfer inside a tube with adiabatic external wall. In
*Proceedings of the 3rd National Interuniversity Conference on Engineering Thermophysics*(pp. 341–345). Xi’an Jiaotong University Press, Xi’an, China.Google Scholar - Zhang, Y., Chen, Z. Q., & Chen, M. (1996). Local non-similarity solution of coupled heat-mass transfer of a flat plate with uniform heat flux in a laminar parallel flow.
*Journal of Thermal Science,**5,*112–116.CrossRefGoogle Scholar - Zhang, Y., & Faghri, A. (2000). Thermal modeling of selective area laser deposition of titanium nitride on a finite slab with stationary and moving laser beams.
*International Journal of Heat and Mass Transfer,**43,*3835–3846.CrossRefGoogle Scholar

## Copyright information

© Springer Nature Switzerland AG 2020