Skip to main content

Cytokine Storm and Sepsis-Induced Multiple Organ Dysfunction Syndrome

  • Chapter
  • First Online:
Cytokine Storm Syndrome

Abstract

The clinical features of primary hemophagocytic lymphohistiocytosis, rheumatological disease-associated macrophage activation syndrome, and hyperferritinemic sepsis-induced multiple organ failure overlap; however, the distinctive pathobiology that causes hyperinflammation in each condition requires different therapies. Primary hemophagocytic lymphohistiocytosis and rheumatologic macrophage activation syndrome are defined by five of eight clinical criteria. In the former normal natural killer cell numbers with absent cytolytic activity allow T-cell activation and proliferation-driven interferon-γ-induced hyperinflammation which is treated with etoposide, dexamethasone, and interferon-γ monoclonal antibody; whereas, in the latter natural killer cell numbers are normal and cytolytic activity is only decreased leading to interleukin-18 driven inflammation that is treated with corticosteroids and interleukin 1 receptor antagonist protein. In hyperferritinemic sepsis-induced multiple organ failure, the combination of hepatobiliary dysfunction and disseminated intravascular coagulation reflects reticuloendothelial system activation and defines sepsis-associated macrophage activation syndrome. In this condition profound T cell and NK cell lymphopenia with normal cytolytic activity allows free hemoglobin and pathogens to stimulate inflammasome activation in the absence of interferon γ production that is be treated with source control, IVIG, plasma exchange, and interleukin 1 receptor antagonist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hotchkiss, R. S., Monneret, G., & Payen, D. (2013). Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. The Lancet Infectious Diseases, 13(3), 260–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Felmet, K. A., Hall, M. W., Clark, R. S., Jaffe, R., & Carcillo, J. A. (2005). Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. Journal of Immunology, 174(6), 3765–3772.

    Article  CAS  Google Scholar 

  3. Gurevich, P., Ben-Hur, H., Czernobilsky, B., Nyska, A., Zuckerman, A., & Zusman, I. (1995). Pathology of lymphoid organs in low birth weight infants subjected to antigen-related diseases: A morphological and morphometric study. Pathology, 27(2), 121–126.

    Article  CAS  PubMed  Google Scholar 

  4. Hotchkiss, R. S., Chang, K. C., Grayson, M. H., Tinsley, K. W., Dunne, B. S., Davis, C. G., et al. (2003). Adoptive transfer of apoptotic splenocytes worsens survival, whereas adoptive transfer of necrotic splenocytes improves survival in sepsis. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6724–6729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chiche, L., Forel, J. M., Thomas, G., Farnarier, C., Vely, F., Bléry, M., et al. (2011). The role of natural killer cells in sepsis. Journal of Biomedicine & Biotechnology, 2011, 986491.

    Article  CAS  Google Scholar 

  6. Brahmamdam, P., Inoue, S., Unsinger, J., Chang, K. C., McDunn, J. E., & Hotchkiss, R. S. (2010). Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis. Journal of Leukocyte Biology, 88(2), 233–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chang, K., Svabek, C., Vazquez-Guillamet, C., Sato, B., Rasche, D., Wilson, S., et al. (2014). Targeting the programmed cell death 1: Programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Critical Care, 18(1), R3.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shindo, Y., Unsinger, J., Burnham, C. A., Green, J. M., & Hotchkiss, R. S. (2015). Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock, 43(4), 334–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poujol, F., Monneret, G., Gallet-Gorius, E., Pachot, A., Textoris, J., & Venet, F. (2018). Ex vivo stimulation of lymphocytes with IL-10 mimics sepsis-induced intrinsic T-cell alterations. Immunological Investigations, 47(2), 154–168.

    Article  CAS  PubMed  Google Scholar 

  10. Boomer, J. S., Shuherk-Shaffer, J., Hotchkiss, R. S., & Green, J. M. (2012). A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. Critical Care, 16(3), R112.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hotchkiss, R. S., Chang, K. C., Swanson, P. E., Tinsley, K. W., Hui, J. J., Klender, P., et al. (2000). Caspase inhibitors improve survival in sepsis: A critical role of the lymphocyte. Nature Immunology, 1(6), 496–501.

    Article  CAS  PubMed  Google Scholar 

  12. Ronit, A., Plovsing, R. R., Gaardbo, J. C., Berg, R. M., Hartling, H. J., Ullum, H., et al. (2017). Inflammation-induced changes in circulating T-cell subsets and cytokine production during human endotoxemia. Journal of Intensive Care Medicine, 32(1), 77–85.

    Article  PubMed  Google Scholar 

  13. Condotta, S. A., Khan, S. H., Rai, D., Griffith, T. S., & Badovinac, V. P. (2015). Polymicrobial sepsis increases susceptibility to chronic viral infection and exacerbates CD8+ T cell exhaustion. Journal of Immunology, 195(1), 116–125.

    Article  CAS  Google Scholar 

  14. Jensen, I. J., Sjaastad, F. V., Griffith, T. S., & Badovinac, V. P. (2018). Sepsis-induced T cell immunoparalysis: The ins and outs of impaired T cell immunity. Journal of Immunology, 200(5), 1543–1553.

    CAS  Google Scholar 

  15. Souza-Fonseca-Guimaraes, F., Parlato, M., Philippart, F., Misset, B., Cavaillon, J. M., Adib-Conquy, M., et al. (2012). Toll-like receptors expression and interferon-γ production by NK cells in human sepsis. Critical Care, 16(5), R206.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vanden Berghe, T., Demon, D., Bogaert, P., Vandendriessche, B., Goethals, A., Depuydt, B., et al. (2014). Simultaneous targeting of IL-1 and IL-18 is required for protection against inflammatory and septic shock. American Journal of Respiratory and Critical Care Medicine, 189(3), 282–291.

    Article  CAS  Google Scholar 

  17. Miethke, T., Duschek, K., Wahl, C., Heeg, K., & Wagner, H. (1993). Pathogenesis of the toxic shock syndrome: T cell mediated lethal shock caused by the superantigen TSST-1. European Journal of Immunology, 23(7), 1494–1500.

    Article  CAS  PubMed  Google Scholar 

  18. Low, D. E. (2013). Toxic shock syndrome: Major advances in pathogenesis, but not treatment. Critical Care Clinics, 29(3), 651–675.

    Article  PubMed  Google Scholar 

  19. Chuang, Y. Y., Huang, Y. C., & Lin, T. Y. (2005). Toxic shock syndrome in children: Epidemiology, pathogenesis, and management. Paediatric Drugs, 7(1), 11–25.

    Article  PubMed  Google Scholar 

  20. Parks, T., Wilson, C., Curtis, N., Norrby-Teglund, A., & Sriskandan, S. (2018). Polyspecific intravenous immunoglobulin in clindamycin-treated patients with streptococcal toxic shock syndrome: A systematic review and meta-analysis. Clinical Infectious Diseases, 67(9), 1434–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kernan, K. F., & Carcillo, J. A. (2017). Hyperferritinemia and inflammation. International Immunology, 29(9), 401–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Conrad, E., Resch, T. K., Gogesch, P., Kalinke, U., Bechmann, I., Bogdan, C., et al. (2014). Protection against RNA-induced liver damage by myeloid cells requires type I interferon and IL-1 receptor antagonist in mice. Hepatology, 59(4), 1555–1563.

    Article  CAS  PubMed  Google Scholar 

  23. Petrasek, J., Dolganiuc, A., Csak, T., Kurt-Jones, E. A., & Szabo, G. (2011). Type I interferons protect from Toll-like receptor 9-associated liver injury and regulate IL-1 receptor antagonist in mice. Gastroenterology, 140(2), 697–708.

    Article  CAS  PubMed  Google Scholar 

  24. Quartier, P., Allantaz, F., Cimaz, R., Pillet, P., Messiaen, C., Bardin, C., et al. (2011). A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Annals of the Rheumatic Diseases, 70(5), 747–754.

    Article  CAS  PubMed  Google Scholar 

  25. Roh, Y. S., Park, S., Kim, J. W., Lim, C. W., Seki, E., & Kim, B. (2014). Toll-like receptor 7-mediated type I interferon signaling prevents cholestasis- and hepatotoxin-induced liver fibrosis. Hepatology, 60(1), 237–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suster, S., Hilsenbeck, S., & Rywlin, A. M. (1988). Reactive histiocytic hyperplasia with hemophagocytosis in hematopoietic organs: A reevaluation of the benign hemophagocytic proliferations. Human Pathology, 19, 705–712.

    Article  CAS  PubMed  Google Scholar 

  27. Strauss, R., Neureiter, D., Westenburger, B., Wehler, M., Kirchner, T., & Hahn, E. G. (2004). Multifactorial risk analysis of bone marrow histiocytic hyperplasia with hemophagocytosis in critically ill medical patients—A postmortem clinicopathologic analysis. Critical Care Medicine, 32(6), 1316–1321.

    Article  PubMed  Google Scholar 

  28. Inai, K., Noriki, S., Iwasaki, H., & Naiki, H. (2014). Risk factor analysis for bone marrow histiocytic hyperplasia with hemophagocytosis: An autopsy study. Virchows Archives, 465, 109–118.

    Article  CAS  Google Scholar 

  29. Steinberg, S., Flynn, W., Kelley, K., Bitzer, L., Sharma, P., Gutierrez, C., et al. (1989). Development of a bacteria-independent model of the multiple organ failure syndrome. Archives Surgery, 124, 1390–1395.

    Article  CAS  Google Scholar 

  30. Behrens, E. M., Canna, S. W., Slade, K., Rao, S., Kreiger, P. A., Paessler, M., et al. (2011). Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. Journal of Clinical Investigtaion, 121, 2264–2277.

    Article  CAS  Google Scholar 

  31. Tsujimoto, H., Ono, S., Matsumoto, A., Kawabata, T., Kinoshita, M., Majima, T., et al. (2006). A critical role of CpG motifs in a murine peritonitis model by their binding to highly expressed toll-like receptor-9 on liver NKT cells. Journal of Hepatology, 45, 836–843.

    Article  CAS  PubMed  Google Scholar 

  32. Szabo, G., & Petrasek, J. (2015). Inflammasome activation and function in liver disease. Nature Reviews. Gastroenterology and Hepatology, 12, 387–400.

    Article  CAS  PubMed  Google Scholar 

  33. Girard-Guyonvarc’h, S., Palomo, J., Martin, P., Rodriguez, E., Troccaz, S., Palmer, G., et al. (2018). Unopposed IL-18 signaling leads to severe TLR9-induced macrophage activation syndrome in mice. Blood, 131(13), 1430–1441.

    Article  PubMed  CAS  Google Scholar 

  34. Demirkol, D., Yildizdas, D., Bayrakci, B., Karapinar, B., Kendirli, T., Koroglu, T. F., et al. (2012). Hyperferritinemia in the critically ill child with secondary hemophagocytic lymphohistiocytosis/sepsis/multiple organ dysfunction syndrome/macrophage activation syndrome: What is the treatment? Critical Care, 16, R52.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ravelli, A., Minoia, F., Davì, S., Horne, A., Bovis, F., Pistorio, A., et al. (2016). 2016 Classification criteria for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis: A European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Arthritis Rheumatology, 68, 566–576.

    Article  PubMed  Google Scholar 

  36. Shakoory, B., Carcillo, J. A., Chatham, W. W., Amdur, R. L., Zhao, H., Dinarello, C. A., et al. (2016). Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: Reanalysis of a prior phase III trial. Critical Care Medicine, 44, 275–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kyriazopoulou, E., Leventogiannis, K., Norrby-Teglund, A., Dimopoulos, G., Pantazi, A., Orfanos, S. E., et al. (2017). Macrophage activation-like syndrome: An immunological entity associated with rapid progression to death in sepsis. BMC Medicine, 15(1), 172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Halstead, E. S., Carcillo, J. A., Schilling, B., Greiner, R. J., & Whiteside, T. L. (2013). Reduced frequency of CD56 dim CD16 pos natural killer cells in pediatric systemic inflammatory response syndrome/sepsis patients. Pediatric Research, 74, 427–432.

    Article  CAS  PubMed  Google Scholar 

  39. Carcillo, J. A., Podd, B., & Simon, D. W. (2017). From febrile pancytopenia to hemophagocytic lymphohistiocytosis-associated organ dysfunction. Intensive Care Medicine, 43(12), 1853–1855.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Castillo, L., & Carcillo, J. (2009). Secondary hemophagocytic lymphohistiocytosis and severe sepsis/systemic inflammatory response syndrome/multiorgan dysfunction syndrome/macrophage activation syndrome share common intermediate phenotypes on a spectrum of inflammation. Pediatric Critical Care Medicine, 10, 387–392.

    Article  PubMed  Google Scholar 

  41. Carcillo, J. A., Halstead, E. S., Hall, M. W., Nguyen, T. C., Reeder, R., Aneja, R., et al. (2017). Three hypothetical inflammation pathobiology phenotypes and pediatric sepsis-induced multiple organ failure outcome. Pediatric Critical Care Medicine, 18(6), 513–523.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Carcillo, J. A., Sward, K., Halstead, E. S., Telford, R., Jimenez-Bacardi, A., Shakoory, B., et al. (2017). A systemic inflammation mortality risk assessment contingency table for severe sepsis. Pediatric Critical Care Medicine, 18(2), 143–150.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rajasekaran, S., Kruse, K., Kovey, K., Davis, A. T., Hassan, N. E., Ndika, A. N., et al. (2014). Therapeutic role of anakinra, an interleukin-1 receptor antagonist, in the management of secondary hemophagocytic lymphohistiocytosis/sepsis/multiple organ dysfunction/macrophage activating syndrome in critically ill children. Pediatric Critical Care Medicine, 15, 401–408.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

On behalf of the authors there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Carcillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carcillo, J.A., Shakoory, B. (2019). Cytokine Storm and Sepsis-Induced Multiple Organ Dysfunction Syndrome. In: Cron, R., Behrens, E. (eds) Cytokine Storm Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-22094-5_27

Download citation

Publish with us

Policies and ethics