Skip to main content

Introduction

  • Chapter
  • First Online:
  • 459 Accesses

Abstract

The study of human behavior is a subject of great scientific interest and probably an inexhaustible source of research by Jacques Jr et al. (IEEE Signal Process Mag 27(5):66–77, 2010). Due to its importance in many applications, the automatic analysis of human behavior has been a popular research topic in the last decades by Alameda-Pineda et al. (Multimodal behavior analysis in the wild: advances and challenges. Elsevier Science, London, 2018). With the improvement of computer vision techniques, the detection and tracing of people has become one of the most important areas of video processing. There are many applications such as entertainment (games and movies), understanding of human behavior, security and surveillance, urban planning, activity recognition, and planning mass crowd events like sports events or entertainment programs by Shahhoseini and Sarvi (Transp Res Part B Methodol 112:57–87, 2019) and Zhao et al. (Pattern Recogn 75:112–127, 2018).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alameda-Pineda X, Ricci E, Sebe N (2018) Multimodal behavior analysis in the wild: advances and challenges. Elsevier Science, London

    Google Scholar 

  • Allain P, Courty N, Corpetti T (2014) Optimal crowd editing. Graph Models 76(1):1–16. https://doi.org/10.1016/j.gmod.2013.09.001, http://www.sciencedirect.com/science/article/pii/S1524070313000271

    Article  Google Scholar 

  • Berry JW, Poorting YH, Breugelmas SM, Chasiotis A, Sam DL (2011) Cross-cultural psychology: research and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cai Z, Yu ZL, Liu H, Zhang K (2014) Counting people in crowded scenes by video analyzing. In: 9th IEEE ICIEA, pp 1841–1845. https://doi.org/10.1109/ICIEA.2014.6931467

  • Chan A, Vasconcelos N (2009) Bayesian poisson regression for crowd counting. In: 12th IEEE ICCV, pp 545–551

    Google Scholar 

  • Chandran A, Poh LA, Vadakkepat P (2015) Identifying social groups in pedestrian crowd videos. In: ICAPR, pp 1–6. https://doi.org/10.1109/ICAPR.2015.7050677

    Google Scholar 

  • Chattaraj U, Seyfried A, Chakroborty P (2009) Comparison of pedestrian fundamental diagram across cultures. Adv Complex Syst 12(03):393–405. https://doi.org/10.1142/S0219525909002209

    Article  Google Scholar 

  • Colque RVHM, Júnior CAC, Schwartz WR (2015) Histograms of optical flow orientation and magnitude to detect anomalous events in videos. In: 2015 28th SIBGRAPI conference on graphics, patterns and images, pp 126–133. https://doi.org/10.1109/SIBGRAPI.2015.21

  • Costa P, McCrae R, Psychological Assessment Resources I (1992) Revised NEO personality inventory (NEO PI-R) and NEO five-factor inventory (NEO-FFI). Psychological Assessment Resources. https://books.google.co.in/books?id=mp3zNwAACAAJ

  • Digman JM (1990) Personality structure: emergence of the five-factor model. Annu Rev Psychol 41(1):417–440. https://doi.org/10.1146/annurev.ps.41.020190.002221

    Article  Google Scholar 

  • Feng L, Bhanu B (2015) Understanding dynamic social grouping behaviors of pedestrians. IEEE J Sel Top Signal Process 9(2):317–329. https://doi.org/10.1109/JSTSP.2014.2365765

    Article  Google Scholar 

  • Forsyth D (2018) Group dynamics. Cengage Learning, Boston

    Google Scholar 

  • Goldberg LR (1990) An alternative “description of personality”: the Big-Five factor structure. J Pers Soc Psychol 59(6):1216–1229

    Article  Google Scholar 

  • Goldstein S (2015) Cross-cultural explorations: activities in culture and psychology. Routledge, New York

    Book  Google Scholar 

  • Guy SJ, Kim S, Lin MC, Manocha D (2011) Simulating heterogeneous crowd behaviors using personality trait theory. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation, SCA’11. ACM, New York, pp 43–52. https://doi.org/10.1145/2019406.2019413

    Chapter  Google Scholar 

  • Hillier B (2002) A theory of the city as object: or, how spatial laws mediate the social construction of urban space. Urban Des Int 7:153–179

    Article  Google Scholar 

  • Hofstede G (2001) Culture’s consequences: comparing values, behaviors, institutions, and organizations across nations. Sage Publications. https://books.google.com.br/books?id=ckcoAQAAMAAJ

    Google Scholar 

  • Hofstede G (2011) Dimensionalizing cultures: the hofstede model in context. Online Read Psychol Cult 2(1):8

    Google Scholar 

  • Hofstede G, Hofstede G, Minkov M (2010) Cultures and organizations: software of the mind, 3rd edn. McGraw-Hill Education. https://books.google.com.br/books?id=o4OqTgV3V00C

  • Ibrahim MS, Muralidharan S, Deng Z, Vahdat A, Mori G (2016) A hierarchical deep temporal model for group activity recognition. In: The IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas

    Google Scholar 

  • Jacques Jr J, Raupp Musse S, Jung C (2010) Crowd analysis using computer vision techniques. IEEE Signal Process Mag 27(5):66–77. https://doi.org/10.1109/MSP.2010.937394

    Google Scholar 

  • Jo H, Chug K, Sethi RJ (2013) A review of physics-based methods for group and crowd analysis in computer vision. Postdoc J: JPR 1(1):4–7

    Google Scholar 

  • John OP (1990) The “Big Five” factor taxonomy: dimensions of personality in the natural language and in questionnaires, chap 4. Lawrence A. Pervin, New York, pp 66–100

    Google Scholar 

  • Kaminka GA, Fridman N (2018) Simulating urban pedestrian crowds of different cultures. Technical report 3. https://doi.org/10.1145/3102302

    Article  Google Scholar 

  • Kapadia M, Shoulson A, Durupinar F, Badler NI (2013) Authoring multi-actor behaviors in crowds with diverse personalities. In: Ali S, Nishino K, Manocha D, Shah M (eds) Modeling, simulation and visual analysis of crowds. The international series in video computing, vol 11. Springer, New York, pp 147–180

    Chapter  Google Scholar 

  • Kocak YP, Sevgen S (2017) Detecting and counting people using real-time directional algorithms implemented by compute unified device architecture. Neurocomputing 248:105–111

    Article  Google Scholar 

  • Krüchten C, Schadschneider A (2017) Empirical study on social groups in pedestrian evacuation dynamics. Physica A 475:129–141

    Article  Google Scholar 

  • Kuo JY, Fan GD, Lai TY (2016) People counting base on head and shoulder information. In: International conference on knowledge engineering and applications (ICKEA). IEEE, Singapore, pp 52–55

    Google Scholar 

  • Lala D, Thovuttikul S, Nishida T (2011) Towards a virtual environment for capturing behavior in cultural crowds. In: 2011 sixth international conference on digital information management, pp 310–315. https://doi.org/10.1109/ICDIM.2011.6093362

  • Li W, Di Z, Allbeck JM (2012) Crowd distribution and location preference. Comput Animat Virtual Worlds 23(3–4):343–351. https://doi.org/10.1002/cav.1447

    Article  Google Scholar 

  • Lu L, Chan C, Wang J, Wang W (2017) A study of pedestrian group behaviors in crowd evacuation based on an extended floor field cellular automaton model. Transp Res Part C Emerg Technol 81:317–329

    Article  Google Scholar 

  • Ma Y, Li L, Zhang H, Chen T (2017) Experimental study on small group behavior and crowd dynamics in a tall office building evacuation. Physica A 473:488–500

    Article  Google Scholar 

  • Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes. In: CVPR 2010, pp 1975–1981. https://doi.org/10.1109/CVPR.2010.5539872

    Google Scholar 

  • McCrae RR, Costa JPL (1996) Toward a new generation of personality theories: theoretical contexts for the five-factor model. In: Wiggins JS (ed) The five-factor model of personality: theoretical perspectives, chap 3. Guilford, New York, pp 51–87

    Google Scholar 

  • McCrae RR, John OP (1992) An introduction to the five-factor model and its applications. J Pers 60(2):175–215

    Article  Google Scholar 

  • Moore SC, Flajšlik M, Rosin PL, Marshall D (2008) A particle model of crowd behavior: exploring the relationship between alcohol, crowd dynamics and violence. Aggress Violent Behav 13(6):413–422. https://doi.org/10.1016/j.avb.2008.06.004, http://www.sciencedirect.com/science/article/pii/S1359178908000451

    Article  Google Scholar 

  • Murino V, Cristani M, Shah S, Savarese S (2017) Group and crowd behavior for computer vision. Elsevier Science, London

    Google Scholar 

  • Nas PJM (2011) Cities full of symbols: a theory of urban space and culture. Amsterdam University Press, Amsterdam

    Book  Google Scholar 

  • Nazir A, Enz S, Lim MY, Aylett R, Cawsey A (2009) Culture–personality based affective model. AI Soc 24(3):281–293. https://doi.org/10.1007/s00146-009-0217-2

    Article  Google Scholar 

  • Ortony A, Clore GL, Collins A (1990) The cognitive structure of emotions. Cambridge University Press, New York

    Google Scholar 

  • Pelechano N, Allbeck JM, Kapadia M, Badler NI (2016) Simulating heterogeneous crowds with interactive behaviors. A. K. Peters, Ltd., Natick

    Book  Google Scholar 

  • Predtechenskii VM, Milinskii AI (1978) Planning for foot traffic flow in buildings. Amerind Publishing, Chicago

    Google Scholar 

  • Sethi RJ (2015) Towards defining groups and crowds in video using the atomic group actions dataset. In: 2015 IEEE international conference on image processing, ICIP 2015, Quebec City, 27–30 Sept 2015, pp 2925–2929. https://doi.org/10.1109/ICIP.2015.7351338

  • Shahhoseini Z, Sarvi M (2019) Pedestrian crowd flows in shared spaces: investigating the impact of geometry based on micro and macro scale measures. Transp Res Part B Method 112:57–87

    Article  Google Scholar 

  • Shao J, Loy C, Wang X (2014) Scene-independent group profiling in crowd. In: IEEE CVPR, pp 2227–2234. https://doi.org/10.1109/CVPR.2014.285

    Google Scholar 

  • Solera F, Calderara S, Cucchiara R (2013) Structured learning for detection of social groups in crowd. In: 2013 10th IEEE international conference on advanced video and signal based surveillance, pp 7–12. https://doi.org/10.1109/AVSS.2013.6636608

  • Solmaz B, Moore BE, Shah M (2012) Identifying behaviors in crowd scenes using stability analysis for dynamical systems. IEEE Trans Pattern Anal Mach Intell 34(10):2064–2070. https://doi.org/10.1109/TPAMI.2012.123

    Article  Google Scholar 

  • Sorokowska A, Sorokowski P, Hilpert P, Cantarero K, Frackowiak T, Ahmadi K, Alghraibeh AM, Aryeetey R, Bertoni A, Bettache K, Blumen S, Błażejewska M, Bortolini T, Butovskaya M, C FN, Cetinkaya H, Cunha D, David D, David OA, Dileym FA, Espinosa ACD, Donato S, Dronova D, Dural S, Fialová J, Fisher M, Gulbetekin E, Akkaya AH, Hromatko I, Iafrate R, Iesyp M, James B, Jaranovic J, Jiang F, Kimamo CO, Kjelvik G, Koç F, Laar A, Lopes FA, Macbeth G, Marcano NM, Martinez R, Mesko N, Molodovskaya N, Moradi K, Motahari Z, Mühlhauser A, Natividade JC, Ntayi J, Oberzaucher E, Ojedokun O, Omar-Fauzee MSB, Onyishi IE, Paluszak A, Portugal A, Razumiejczyk E, Realo A, Relvas AP, Rivas M, Rizwan M, Salkičević S, Sarmány-Schuller I, Schmehl S, Senyk O, Sinding C, Stamkou E, Stoyanova S, Šukolová D, Sutresna N, Tadinac M, Teras A, Ponciano ELT, Tripathi R, Tripathi N, Tripathi M, Uhryn O, Yamamoto ME, Yoo G, Pierce JD (2017) Preferred interpersonal distances: a global comparison. J Cross Cult Psychol 48:577–592

    Google Scholar 

  • Wang C, Zhang H, Yang L, Liu S, Cao X (2015) Deep people counting in extremely dense crowds. In: Proceedings of the 23rd ACM international conference on multimedia. ACM, New York, pp 1299–1302

    Chapter  Google Scholar 

  • Weidmann U (1993) Transporttechnik der fussgänger. Technical report, Institut für Verkehrsplanung, ETH Zürich

    Google Scholar 

  • Yuan Y, Fang J, Wang Q (2015) Online anomaly detection in crowd scenes via structure analysis. IEEE Trans Cybern 45:548–561

    Article  Google Scholar 

  • Zhang Y, Lu H, Zhang L, Ruan X, Sakai S (2016) Video anomaly detection based on locality sensitive hashing filters. Pattern Recogn 59:302–311

    Article  Google Scholar 

  • Zhao W, Zhang Z, Huang K (2018) Gestalt laws based tracklets analysis for human crowd understanding. Pattern Recogn 75:112–127

    Article  Google Scholar 

  • Zhou B, Tang X, Zhang H, Wang X (2014) Measuring crowd collectiveness. IEEE Trans Pattern Anal Mach Intell 36(8):1586–1599. https://doi.org/10.1109/TPAMI.2014.2300484

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Favaretto, R.M., Musse, S.R., Costa, A.B. (2019). Introduction. In: Emotion, Personality and Cultural Aspects in Crowds. Springer, Cham. https://doi.org/10.1007/978-3-030-22078-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22078-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22077-8

  • Online ISBN: 978-3-030-22078-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics