Skip to main content

Virtual Prediction of Accuracy of Processing on Example of External Circular Grinding

  • Conference paper
  • First Online:
  • 1000 Accesses

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Virtual prediction of processing accuracy is an actual task not only for modern mechanical engineering, but also for creating effective production cyber-physical systems based on the concept of “Industry 4.0.” Prediction of the accuracy is possible to implement by using the method of calculating the processing error and the model of metal removal (presented in this article in more detail) which is a model of grinding surface forming, taking into account the features of processing in reverse and non-reverse zones and allowing to calculate the current values of the radii in any section of the processing surface during the whole grinding cycle for the given processing conditions. The model of surface dimensions is constructed on the basis of the calculated values of the processing surface radii in order to estimate the errors of a diametrical size and shape error and location of the surfaces with a simultaneous evaluation of circular grinding cycle productivity. The model of metal removal for the circular external grinding cycle, described in this article, can be used not only for prediction of the processing accuracy for a given processing cycle, but also for designing a speed-optimal cycle, i.e., the model is a basis for development of an optimal cycle creation methodology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

σi:

Average stress intensity, N/mm2

d :

Workpiece diameter, mm

D :

Wheel diameter, mm

V 1 :

Periphery speed of wheel, m/s

V 2 :

Workpiece rotational speed, m/min

V soc :

Speed of wheel axial speed, mm/min

tp k,i,z :

Program value of radial component of the cutting force, mm/double stroke

k :

Ordinal number of workpiece radius

z :

Ordinal number of cycle stage

i :

Ordinal number of tool stroke on zth stage of cycle

B :

Total grinding wheel height, mm

η :

Bluntness ratio of wheel

γ :

Technological system compliance, N/mm

R wk :

Initial radius of workpiece on kth radius, mm

tp k,i−1,z :

Program feed per one workpiece revolution, mm

R max :

Maximal workpiece radius, mm

References

  1. Pereverzev PP (1999) Theory and method for calculation of the optimum cycles of processing of the parts on cylindrical grinding machines with automated control. Dissertation, University of Chelyabinsk

    Google Scholar 

  2. Pereverzev PP, Akintseva AV (2018) Modelling of renting of metal in reverse zones in the course of internal grinding. Russ Eng Res 38(3):229–234

    Article  Google Scholar 

  3. Rowe WB (2013) Principles of modern grinding technology. Elsevier, Liverpool

    Google Scholar 

  4. Balakshin BS (1973) Adaptivnoe upravlenie stankami (Adaptive machine control). Mashinostroenie, Moscow

    Google Scholar 

  5. Bazrov BM (1984) Raschet tochnosti mashin na EHVM (EHVM machine accuracy calculation). Mashinostroenie, Moscow

    Google Scholar 

  6. Pereira WX, Diniz AE, Hassu A (2009) Comparing different plunge cylindrical grinding cycles based on workpiece roughness and process vibration. J Braz Soc Mech Sci Eng. https://doi.org/10.1590/s1678-58782009000200009

  7. Bratan SM (2006) Tekhnologicheskie osnovy obespecheniya kachestva i povysheniya stabil’nosti vysokoproizvoditel’nogo chistovogo tonkogo shlifovaniya (Technological basis for quality assurance and improving the stability of high-performance fine grinding). Dissertation, University of Odesa

    Google Scholar 

  8. Novoselov YUK (2012) Dinamika formoobrazovaniya poverhnostej pri abrazivnoj obrabotke (Dynamics of formation of surfaces during abrasive machining). Izd-vo SevNTU, Sevastopol’

    Google Scholar 

  9. Zhang Y, Li B, Yang J, Liang S (2018) Modeling and optimization of alloy steel 20CrMnTi grinding process parameters based on experiment investigation. Int J Adv Manuf Technol 95(5–8):1859–1873

    Article  Google Scholar 

  10. Uhlmann E, Koprowski S, Weingaertner WL, Rolon DA (2016) Modelling and simulation of grinding processes with mounted points: part I of II—grinding tool surface characterization. Procedia CIRP 46:599–6027

    Article  Google Scholar 

  11. Liu YM, Yang TY, He Z, Li JY (2018) Analytical modeling of grinding process in rail profile correction considering grinding pattern. Arch Civil Mech Eng 18(2):669–678

    Article  Google Scholar 

  12. Rowe WB, Ebbrell S (2004) Process requirements for cost-effective precision grinding. CIRP Ann 53(1):255–258

    Article  Google Scholar 

  13. Gao S, Yang C, Fu Y, Su H, Ding W (2017) Optimization for internal traverse grinding of valves based on wheel deflection. Int J Adv Manuf Technol 92(1–4):1105–1112

    Article  Google Scholar 

  14. Leonesio M, Sarhangi M, Bianchi G, Parenti P, Cassinari A (2015) A meta-model framework for grinding simulation. Procedia CIRP 31:357–362

    Article  Google Scholar 

  15. Sundarrajan KD (2015) Study of grinding burn using design of experiments approach and advanced kaizen methodology. Dissertation, University of Nebraska, Lincoln

    Google Scholar 

  16. Xuekun Li (2010) Modeling and simulation of grinding processes based on a virtual wheel model and microscopic interaction analysis. Dissertation, Worcester Polytechnic Institute

    Google Scholar 

  17. Vasja Roblek V, Meško M, Krapež A (2016) A complexity view of Industry 4.0. SAGE Open. https://doi.org/10.1177/2158244016653987

    Article  Google Scholar 

  18. Pereverzev PP, Akintseva AV (2016) Optimal internal grinding cycles in multidimensional control-parameter space. Russ Eng Res 36(11):974–978. https://doi.org/10.3103/S1068798X16110174

    Article  Google Scholar 

  19. Korolev AV (1975) Issledovanie processov obrazovaniya poverhnostej instrumenta i detali pri abrazivnoj obrabotke (The study of the processes of formation of the surfaces of tools and parts during abrasive machining). Izd-vo Sarat, Un-ta, Saratov

    Google Scholar 

  20. Korchak SN (1974) The productivity of the grinding of steel parts. Mashinostroenie, Moscow

    Google Scholar 

  21. Pereverzev PP, Pimenov DY (2016) A grinding force model allowing for dulling of abrasive wheel cutting grains in plunge cylindrical grinding. J Frict Wear 37(1):60–65

    Article  Google Scholar 

  22. Lazoglu I, Kratz H, Buyukhatipoglu K, Klocke F (2006) Forces and temperatures in hard turning. J Taylor Francis Group 10(20):157–179. https://doi.org/10.1080/10910340600713554

    Article  Google Scholar 

  23. Pereverzev PP, Alsigar MK (2017) Modelirovanie processa s”ema metalla v avtomaticheskih ciklah kruglogo naruzhnogo shlifovaniya s prodol’noj podachej (Simulation of metal removal process in automatic round-grinding external grinding cycles with longitudinal feed “). Metalloobrabotka 6:38–42

    Google Scholar 

  24. Pereverzev PP, Akintseva AV (2016) Model of cutting force while managing two regime parameters in the process of internal grinding. Procedia Eng 150:1113–1117. https://doi.org/10.1016/j.proeng.2016.07.222

    Article  Google Scholar 

  25. Pereverzev PP, Akintseva AV (2016) Mathematical model for the internal grinding process of a non-circular hole machining. Procedia Eng 150:118–1123. https://doi.org/10.1016/j.proeng.2016.07.223

    Article  Google Scholar 

  26. Pereverzev PP, Akintseva AV (2016) Model of formation of processing errors intragrinding. Russ Eng Res 36(12):1048–1053. https://doi.org/10.3103/S1068798X16120133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Akintseva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pereverzev, P.P., Akintseva, A.V., Alsigar, M.K. (2020). Virtual Prediction of Accuracy of Processing on Example of External Circular Grinding. In: Radionov, A., Kravchenko, O., Guzeev, V., Rozhdestvenskiy, Y. (eds) Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019). ICIE 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-22063-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22063-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22062-4

  • Online ISBN: 978-3-030-22063-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics