Ceramic Scintillation Materials—Approaches, Challenges and Possibilities

  • P. V. Karpyuk
  • G. A. DosovitskiyEmail author
  • D. E. Kuznetsova
  • E. V. Gordienko
  • A. A. Fedorov
  • V. A. Mechinsky
  • A. E. Dosovitskiy
  • M. V. Korzhik
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 227)


Various stages of the preparation of polycrystalline materials based on compounds with garnet structure of general composition (Gd,Y)3(Al,Ga)5O12:Ce are considered. Certain patterns and difficulties are noted for each stage of the process. Examples are given from experimental results on obtaining of garnet ceramics.



The work on ceramics for neutron detection is supported by Russian Federation Government (grant number 14.W03.31.0004).


  1. 1.
    C. Dujardin, E. Auffray et al., Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 65(8), 1977–1997 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    D.S. McGregor, Materials for gamma-ray spectrometers: inorganic scintillators. Annu. Rev. Mater. Res. (2018)Google Scholar
  3. 3.
    P. Lecoq, A., Gektin, M. Korzhik, How user’s requirements influence the development of scintillators, in Inorganic Scintillators for Detector Systems (Springer, 2017), pp. 43–101Google Scholar
  4. 4.
    T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, Evaluation of properties of YAG (Ce) ceramic scintillators. IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    E. Zych, C. Brecher, A.J. Wojtowicz, H. Lingertat, Luminescence properties of Ce-activated YAG optical ceramic scintillator materials. J. Lumin. 75(3), 193–203 (1997)CrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
    J. Jiang, K. Shimazoe, Y. Nakamura, H., Takahashi, Y. Shikaze, Y. Nishizawa, et al., A prototype of aerial radiation monitoring system using an unmanned helicopter mounting a GAGG scintillator Compton camera. J. Nucl. Sci. Technol. 53(7), 1067–1075 (2016)CrossRefGoogle Scholar
  9. 9.
    H.M. Park, K.S. Joo, Development of a real-time radiation level monitoring sensor for building an underwater radiation monitoring system. J. Sens. Sci. Technol. 24(2), 96–100 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Yamamoto, H. Nitta, Development of an event-by-event based radiation imaging detector using GGAG: a ceramic scintillator for X-ray CT. NIM A (2018) (in press)Google Scholar
  11. 11.
    Y. Wu, Z. Luo, H. Jiang, F. Meng, M. Koschan, C.L. Melcher, Single crystal and optical ceramic multicomponent garnet scintillators: a comparative study. NIM A780, 45–50 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    F.R. Schneider, K. Shimazoe, I. Somlai-Schweiger, S.I. Ziegler, A PET detector prototype based on digital SiPMs and GAGG scintillators. Phys. Med. Biol. 60(4), 1667 (2015)CrossRefGoogle Scholar
  13. 13.
    N.J. Cherepy, Z.M. Seeley, S.A. Payne, P.R. Beck, O.B. Drury, S.P. O’Neal, K.M. Figueroa, S. Hunter, L. Ahle, P.A. Thelin, T. Stefanik, Development of transparent ceramic Ce-doped gadolinium garnet gamma spectrometers. IEEE Trans. Nucl. Sci. 60(3), 2330–2335 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    N.J. Cherepy, J.D. Kuntz, Z.M. Seeley, S.E. Fisher, O.B. Drury, B.W. Sturm, T.A. Hurst, R.D. Sanner, J.J. Roberts, S.A. Payne, Transparent ceramic scintillators for gamma spectroscopy and radiography, in Hard X-ray, Gamma-ray, and Neutron Detector Physics XII, vol. 7805, 78050I (2010)Google Scholar
  15. 15.
    A. Giaz, G. Hull, V. Fossati, N. Cherepy, F. Camera, N. Blasi, S. Brambilla, S. Coelli, B. Million, S. Riboldi, Preliminary investigation of scintillator materials properties: SrI2:Eu,CeBr3 and GYGAG:Ce for gamma rays up to 9 MeV. NIM A 804, 212–220 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    A. Nagura, K. Kamada, M. Nikl, S. Kurosawa, J. Pejchal, Y. Yokota et al., Improvement of scintillation properties on Ce doped Y3Al5O12 scintillator by divalent cations co-doping. Jpn. J. Appl. Phys. 54(4S), 04DH17 (2015)Google Scholar
  17. 17.
    P. Průša, M. Kučera, V. Babin, P. Brůža, D. Pánek, A. Beitlerová, M. Garnet et al., Scintillators of superior timing characteristics: material, engineering by liquid phase epitaxy. Adv. Opt. Mater. 5(6), 1600875 (2017)Google Scholar
  18. 18.
    G. Tamulaitis, A. Vaitkevičius, S. Nargelas, R. Augulis, V. Gulbinas, P. Bohacek, M. Nikl, A. Borisevich, A. Fedorov, M. Korjik, E. Auffray, Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 870, 25–29 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    T. Yanagida, T. Itoh, H. Takahashi, S. Hirakuri, M. Kokubun, K. Makishima et al., Improvement of ceramic YAG (Ce) scintillators to (YGd) 3Al5O12 (Ce) for gamma-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 579(1), 23–26 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    C.W. Van Eijk, Inorganic scintillators in medical imaging. Phys. Med. Biol. 47(8), R85 (2002)CrossRefGoogle Scholar
  21. 21.
    T. Kanai, M. Satoh, I. Miura, Hot-pressing method to consolidate Gd3(Al,Ga)5O12:Ce garnet scintillator powder for use in an X-ray CT detector. Int. J. Appl. Ceram. Technol. 10, E1–E10 (2013)CrossRefGoogle Scholar
  22. 22.
    V.V. Nagarkar, T.K. Gupta, S.R. Miller, Y. Klugerman, M.R. Squillante, G. Entine, Structured CsI (Tl) scintillators for X-ray imaging applications. IEEE Trans. Nucl. Sci. 45(3), 492–496 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    G. Dosovitskiy, A. Fedorov, P. Karpyuk, D. Kuznetsova, A., Mikhlin, D. Kozlov, M. Korjik et al., Polycrystalline scintillators for large area detectors in HEP experiments. J. Instrum. 12(06), C06045 (2017)CrossRefGoogle Scholar
  24. 24.
    V. Lupei, Comparative spectroscopic investigation of rare earth-doped oxide transparent ceramics and single crystals. J. Alloy. Compd. 451(1–2), 52–55 (2008)CrossRefGoogle Scholar
  25. 25.
    T. Yanagida, K. Kamada, Y. Fujimoto, H. Yagi, T. Yanagitani, Comparative study of ceramic and single crystal Ce:GAGG scintillator. Opt. Mater. 35(12), 2480–2485 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    M.T. Lucchini, K. Pauwels, K. Blazek, S. Ochesanu, E. Auffray, Radiation tolerance of LuAG:Ce and YAG:Ce crystals under high levels of gamma-and proton-irradiation. IEEE Trans. Nucl. Sci. 63(2), 586–590 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    M. Tyagi, F. Meng, M. Koschan, A.K. Singh, C.L. Melcher, S.C. Gadkari, Effect of Co-doping on the radiation hardness Gd3Ga3Al2O12:Ce scintillators. IEEE Trans. Nucl. Sci. 62(1), 336–339 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    K. Kamada, T. Yanagida, T. Endo, K. Tsutumi, Y. Usuki, M. Nikl et al., 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. J. Cryst. Growth 352(1), 88–90 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    M., Tyagi, V.V. Desai, A.K. Singh, S.G. Singh, S. Sen, B.K. Nayak, S.C. Gadkari, Timing characteristics of Ce doped Gd3Ga3Al2O12 single crystals in comparison with CsI (Tl) scintillators. Physica Status Solidi(a) 212(10), 2213–2218 (2015)Google Scholar
  30. 30.
    Z.M. Seeley, N.J. Cherepy, S.A. Payne, Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy. J. Cryst. Growth 379, 79–83 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    N.J. Cherepy, Z.M. Seeley, S.A., Payne, P.R. Beck, O.B. Drury, S.P. O’Neal, T. Stefanik et al., Development of transparent ceramic Ce-doped gadolinium garnet gamma spectrometers. IEEE Trans. Nucl. Sci. 60(3), 2330–2335 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    N.J. Cherepy, Z.M. Seeley, S.A. Payne, E.L. Swanberg, P.R. Beck, D. Schneberk et al., Transparent ceramic scintillators for gamma spectroscopy and MeV imaging. Hard X-ray, Gamma-ray, and neutron detector physics XVII 9593, 95930P (2015)CrossRefGoogle Scholar
  33. 33.
    K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, A. Yoshikawa, Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds. J. Phys. D: Appl. Phys. 44(50), 505104 (2011)CrossRefGoogle Scholar
  34. 34.
    K. Kamada, S. Kurosawa, P. Prusa, M. Nikl, V.V Kochurikhin, T. Endo et al., Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Opt. Mater. 36(12), 1942–1945 (2014)Google Scholar
  35. 35.
    H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, K. Ueda, The optical properties and laser characteristics of Cr3+ and Nd3+ co-doped Y3Al5O12 ceramics. Opt. Laser Technol. 39(6), 1295–1300 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A.A. Kaminskii, H. Yagi, T. Yanagitani, Optical properties and highly efficient laser oscillation of Nd:YAG ceramics. Applied Physics B 71(4), 469–473 (2000)CrossRefGoogle Scholar
  37. 37.
    P.V. Karpyuk, D.E. Kuznetsova, K.B. Bogatov, G.A. Dosovitskiy, Application of laser diffraction method for measurement of particle size distribution of the YAG powders, submitted to Zavodskaya Laboratoriya (in Russian), Private Communication, 12.10.2018Google Scholar
  38. 38.
    E. Gordienko, A. Fedorov, E. Radiuk, V. Mechinsky, G. Dosovitskiy, E. Vashchenkova et al., Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield. Opt. Mater. 78, 312–318 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    C.B. Carter, M.G. Norton, in Ceramic Materials: Science and Engineering (Springer, 2007)Google Scholar
  40. 40.
    M. Rubat du Merac, H.J. Kleebe, M.M. Müller, I.E. Reimanis, Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel. J. Am. Ceram. Soc. 96(11), 3341–3365 (2013)CrossRefGoogle Scholar
  41. 41.
    G. Dosovitskiy, Raw Materials for bulk oxide scintillators for gamma-rays, charged particles and neutrons detection, in International Conference on Engineering of Scintillation Materials and Radiation Technologies (Springer, 2017), pp. 85–103Google Scholar
  42. 42.
    J.G. Kang, M.K. Kim, K. Kim, Preparation and luminescence characterization of GGAG:Ce3+, B3+ for a white light-emitting diode. Mater. Res. Bull. 43(8–9), 1982–1988 (2008)CrossRefGoogle Scholar
  43. 43.
    Y. Wu, M. Nikl, V. Jary, G. Ren, Thermally induced ionization of 5d1 state of Ce3+ ion in Gd3Ga3Al2O12 host. Chem. Phys. Lett. 574, 56–60 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    A. Ikesue, Y.L. Aung, T. Yoda, S. Nakayama, T. Kamimura, Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing. Opt. Mater. 29(10), 1289–1294 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Q.Q. Zhu, L.Y. Hao, X. Xu, S. Agathopoulos, D.W. Zheng, C.H. Fang, A novel solid-state synthesis of long afterglow, Si–N co-doped, Y3Al5O12:Ce3+ phosphor. J. Lumin. 172, 270–274 (2016)CrossRefGoogle Scholar
  46. 46.
    S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, Properties of transparent Ce:YAG ceramic phosphors for white LED. Opt. Mater. 33(5), 688–691 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    J. Li, X. Sun, S. Liu, X. Li, J.G. Li, D. Huo, A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics. Ceram. Int. 41(2), 3283–3287 (2015)CrossRefGoogle Scholar
  48. 48.
    L. Wang, F. Zhao, M. Zhang, T. Hou, Z. Li, C. Pan, H. Huang, Preparation and photoluminescence properties of YAG:Ce3+ phosphors by a series of amines assisted co-precipitation method. J. Alloy. Compd. 661, 148–154 (2016)CrossRefGoogle Scholar
  49. 49.
    E.V. Tret’yak, G. P. Shevchenko, M.V. Korjik, Formation of high-density scintillation ceramic from LuAG:Ce+Lu2O3 powders obtained by co-precipitation method. Opt. Materials 46, 596–600 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Y. Wang, G. Baldoni, G., Rhodes, W. H., Brecher, C., Shah, A., Shirwadkar, U.,… & Payne, S. Transparent garnet ceramic scintillators for gamma-ray detection, in Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV, vol. 8507 (2012), p. 850717Google Scholar
  51. 51.
    J.Y. Zhang, Z.H. Luo, H.C. Jiang, J. Jiang, C.H. Chen, J.X. Zhang, Z.Z. Gui, N. Xiao, Highly transparent cerium doped gadolinium gallium aluminum garnet ceramic prepared with precursors fabricated by ultrasonic enhanced chemical co-precipitation. Ultrason. Sonochem. 39, 792–797 (2017)CrossRefGoogle Scholar
  52. 52.
    S.A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj, H. Sarpoolaky, Synthesis of an alumina–YAG nanopowder via sol–gel method. J. Alloy. Compd. 456(1–2), 282–285 (2008)CrossRefGoogle Scholar
  53. 53.
    S. Butkute, A. Zabiliute, R. Skaudzius, P. Vitta, A. Beganskiene, A. Zukauskas, A. Kareiva, Sol–gel synthesis, characterization and study of substitution effects in different gallium-containing garnets. J. Sol-Gel. Sci. Technol. 76(1), 210–219 (2015)CrossRefGoogle Scholar
  54. 54.
    L. Franks, R.B. James, M. Fiederle, A. Burger, Hard X-ray, gamma-ray, and neutron detector physics XVII. Proc. SPIE 8142, 81421N-1 (2015)Google Scholar
  55. 55.
    J.Y. Zhang, Z.H. Luo, Y.F. Liu, H.C. Jiang, J. Jiang, G.Q. Liu, J.X. Zhang, H.M. Qin, Cation-substitution induced stable GGAG:Ce3+ ceramics with improved optical and scintillation properties, J. Eur. Ceram. Soc. 37(15), 4925–4930 (2017)CrossRefGoogle Scholar
  56. 56.
  57. 57.
    T.C. Hales, An overview of the Kepler conjecture (1998). arXiv preprint math/9811071Google Scholar
  58. 58.
    V.N. Manoharan, Colloidal matter: packing, geometry, and entropy. Science 349(6251), 1253751 (2015)MathSciNetCrossRefGoogle Scholar
  59. 59.
    S.J. Pandey, M. Martinez, J. Hostaša, L. Esposito, M. Baudelet, R. Gaume, Quantification of SiO2 sintering additive in YAG transparent ceramics by laser-induced breakdown spectroscopy (LIBS). Opt. Mater. Express 7(5), 1666–1671 (2017)ADSCrossRefGoogle Scholar
  60. 60.
    O.L. Khasanov, E.S. Dvilis, Net shaping nanopowders with powerful ultrasonic action and methods of density distribution control. Adv. Appl. Ceram. 107(3), 135–141 (2008)CrossRefGoogle Scholar
  61. 61.
    L. Chretien, L. Bonnet, R. Boulesteix, A. Maitre, C. Salle, A. Brenier, Influence of hot isostatic pressing on sintering trajectory and optical properties of transparent Nd:YAG ceramics. J. Eur. Ceram. Soc. 36(8), 2035–2042 (2016)CrossRefGoogle Scholar
  62. 62.
    B. Yao, H. Su, J. Zhang, Q. Ren, W. Ma, L. Liu, H. Fu, Sintering densification and microstructure formation of bulk Al2O3/YAG eutectic ceramics by hot pressing based on fine eutectic structure. Mater. Des. 92, 213–222 (2016)CrossRefGoogle Scholar
  63. 63.
    L. Bergstrom, Surface and Colloid Chemistry in Advanced Ceramics Processing. (Routledge, 2017)Google Scholar
  64. 64.
    J. Lu, K.I. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A.A. Kaminskii, (Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials. J. Alloy. Compd. 341(1–2), 220–225 (2002)CrossRefGoogle Scholar
  65. 65.
    A.A. Kaminskii, V.B. Kravchenko, Y.L. Kopylov, S.N. Bagayev, V.V. Shemet, A.A. Komarov, Novel polycrystalline laser material: Nd3+:Y3Al5O12 ceramics fabricated by the high‐pressure colloidal slip‐casting (HPCSC) method. Physica Status Solidi(a) 204(7), 2411–2415 (2007)Google Scholar
  66. 66.
    S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, M. & Nakatsuka, Preparation and optical properties of transparent Ce:YAG ceramics for high power white LED, in IOP Conference Series: Materials Science and Engineering, vol. 1, No. 1, 012031 (IOP Publishing, 2009)Google Scholar
  67. 67.
    W. Guo, J. Huang, Y. Lin, Q. Huang, B. Fei, J. Chen et al., A low viscosity slurry system for fabricating chromium doped yttrium aluminum garnet (Cr:YAG) transparent ceramics. J. Eur. Ceram. Soc. 35(14), 3873–3878 (2015)CrossRefGoogle Scholar
  68. 68.
    X.J. Wan, Y.C. Zhang, M. Wang, Y. Liu, Y.S. Li, Preparation and properties of Cr, Nd:YAG transparent ceramics by slip casting. Solid State Phenom. 281, 723–728 (2018)CrossRefGoogle Scholar
  69. 69.
    X. Ba, J. Li, Y. Zeng, Y. Pan, B. Jiang, W. Liu, J. Liu, J. Guo et al., Transparent Y3Al5O12 ceramics produced by an aqueous tape casting method. Ceram. Int. 39(4), 4639–4643 (2013)Google Scholar
  70. 70.
    C. Ma, F. Tang, H. Lin, W. Chen, G. Zhang, Y. Cao, W. Wang, X.Z. Yuan, Z. Dai, Fabrication and planar waveguide laser behavior of YAG/Nd:YAG/YAG composite ceramics by tape casting. J. Alloys Compd. 640, 317–320 (2015)CrossRefGoogle Scholar
  71. 71.
    Z.M. Seeley, N.J. Cherepy, S.A. Payne, Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy. J. Cryst. Growth. 379, 79–83 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    D. Komissarenko, P. Sokolov, A. Evstigneeva, I. Shmeleva, A. Dosovitsky, Rheological and curing behavior of acrylate-based suspensions for the DLP 3D printing of complex zirconia parts. Materials 11(12), 2350 (2018)ADSCrossRefGoogle Scholar
  73. 73.
    S. Maleksaeedi, H. Eng, F.E. Wiria, T.M.H. Ha, Z. He, Property enhancement of 3D-printed alumina ceramics using vacuum infiltration. J. Mater. Process. Technol. 214(7), 1301–1306 (2014)CrossRefGoogle Scholar
  74. 74.
    U. Scheithauer, E. Schwarzer, H.J. Richter, T. Moritz, Thermoplastic 3D printing—an additive manufacturing method for producing dense ceramics. Int. J. Appl. Ceram. Technol. 12(1), 26–31 (2015)CrossRefGoogle Scholar
  75. 75.
    U. Scheithauer, E. Schwarzer, T. Moritz, A. Michaelis, Additive manufacturing of ceramic heat exchanger: opportunities and limits of the lithography-based ceramic manufacturing (LCM). J. Mater. Eng. Perform. 27(1), 14–20 (2018)CrossRefGoogle Scholar
  76. 76.
    G.A. Dosovitskiy, P.V. Karpyuk, P.V. Evdokimov, D.E. Kuznetsova, V.A. Mechinsky, A.E. Borisevich et al., First 3D-printed complex inorganic polycrystalline scintillator. CrystEngComm 19(30), 4260–4264 (2017)CrossRefGoogle Scholar
  77. 77.
    Z.M. Deng, L. Gou, J.G. Ran, Study on rheological properties of Yb:YAG slurry by slip casting process. Bull. Chin. Ceram. Soc. 2, 010 (2013)Google Scholar
  78. 78.
    X. Ba, J. Li, Y. Zeng, Y. Pan, B. Jiang, W. Liu, J. Liu, J. Guo et al., Transparent Y3Al5O12 ceramics produced by an aqueous tape casting method. Ceramics International, 39(4), 4639–4643 (2013)Google Scholar
  79. 79.
    Y.D. Tretyakov, Solid-phase reactions. Chemistry (1978)Google Scholar
  80. 80.
    E.S. Lukin, Theoretical Foundations of Production and Technology of Optically Transparent Ceramics, vol. 36 (Moscow, 1982) (In Russian)Google Scholar
  81. 81.
    A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, Fabrication and optical properties of high-Performance polycrystalline Nd:YAG ceramics for solid-State lasers. J. Am. Ceram. Soc. 78(4), 1033–1040 (1995)ADSCrossRefGoogle Scholar
  82. 82.
    R. Boulesteix, A. Maitre, J.F. Baumard, C. Sallé, Y. Rabinovitch, Mechanism of the liquid-phase sintering for Nd: AG ceramics. Opt. Mater. 31(5), 711–715 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    A. Yoshikawa, V. Chani, M. Nikl, Czochralski growth and properties of scintillating crystals. Acta Phys. Pol. A 124(2), 251 (2013)CrossRefGoogle Scholar
  84. 84.
    Y. Wang, G. Baldoni, W.H. Rhodes, C. Brecher, A. Shah, U. Shirwadkar, J. Glodo, N. Cherepy, S. Payne, Transparent garnet ceramic scintillators for gamma-ray detection, in Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV, vol. 8507 (International Society for Optics and Photonics, 2012 October), p. 850717Google Scholar
  85. 85.
    A. Maître, C. Sallé, R. Boulesteix, J.F. Baumard, Y. Rabinovitch, Effect of silica on the reactive sintering of polycrystalline Nd:YAG ceramics. J. Am. Ceram. Soc. 91(2), 406–413 (2008)CrossRefGoogle Scholar
  86. 86.
    T. Zhou et al., MgO assisted densification of highly transparent YAG ceramics and their microstructural evolution. J. Eur. Ceram. Soc. 38, 687–693 (2018)CrossRefGoogle Scholar
  87. 87.
    S. Zamir, Solubility limit of Si in YAG at 1700 °C in vacuum. J. Eur. Ceram. Soc. 37, 243–248 (2017)CrossRefGoogle Scholar
  88. 88.
    W. Zhang et al., Co-precipitation synthesis and vacuum sintering of Nd:YAG powders for transparent ceramics. Mater. Res. Bull. 70, 365–372 (2015)CrossRefGoogle Scholar
  89. 89.
    S. Chen et al., Fabrication of Ce:(Gd2Y)(Ga3Al2)O12 scintillator ceramic by oxygen-atmosphere sintering and hot isostatic pressing. J. Eur. Ceram. Soc. 37, 3411–3415 (2017)CrossRefGoogle Scholar
  90. 90.
    R. Chaim, Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater. Sci. Eng. 443, 25–32 (2007)CrossRefGoogle Scholar
  91. 91.
    R. Chaim, M. Kalina, J.Z. Shen, Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering. J. Eur. Ceram. Soc. 27, 3331–3337 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • P. V. Karpyuk
    • 1
    • 2
  • G. A. Dosovitskiy
    • 1
    • 2
    Email author
  • D. E. Kuznetsova
    • 1
    • 2
  • E. V. Gordienko
    • 1
    • 2
  • A. A. Fedorov
    • 1
    • 4
  • V. A. Mechinsky
    • 1
    • 4
  • A. E. Dosovitskiy
    • 3
  • M. V. Korzhik
    • 1
    • 4
  1. 1.National Research Center “Kurchatov Institute”MoscowRussian Federation
  2. 2.NRC “Kurchatov Institute” – IREAMoscowRussian Federation
  3. 3.NeoChem JSCMoscowRussian Federation
  4. 4.Institute for Nuclear Problems of Belarussian State UniversityMinskRepublic of Belarus

Personalised recommendations