Coincidence Time Resolution Measurements with Scintillators

Part of the Particle Acceleration and Detection book series (PARTICLE)


This chapter reviews the technique of coincidence time resolution (CTR) using scintillators as the primary detectors of γ-quanta exploited in these measurements, which are quite often used to characterize the timing capabilities of scintillating materials. The contributions of different factors affecting the measurements are analyzed. The recent results obtained by using the CTR technique for studying the currently prospective scintillators are presented.


  1. 1.
    R. Post, L. Schiff, Statistical limitations on the resolving time of a scintillation counter. Phys. Rev. 80, 1113 (1950)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Gatti, V. Svelto, Theory of time resolution in scintillation counters. Nucl. Instrum. Methods 4, 189–201 (1959)ADSCrossRefGoogle Scholar
  3. 3.
    L.G. Hyman, R.M. Schwarz, R.A. Schluter, Study of high-speed photomultiplier systems. Rev. Sci. Instrum. 35, 393–406 (1964)ADSCrossRefGoogle Scholar
  4. 4.
    L.G. Hyman, Time resolution of photomultiplier systems. Rev. Sci. Instrum. 36, 193–196 (1965)ADSCrossRefGoogle Scholar
  5. 5.
    F. Lynch, in Basic limitation of scintillation counters in time measurements. At Nuclear Science Symposium and 14th Scintillation and Semiconductor Counter Symposium, Washington, DC, 11–13 December 1974Google Scholar
  6. 6.
    E. Gatti, V. Svelto, Revised theory of time resolution in scintillation counters. Nucl. Instrum. Methods 30, 213–223 (1964)ADSCrossRefGoogle Scholar
  7. 7.
    E. Gatti, V. Svelto, Review of theories and experiments of resolving time with scintillation counters. Nucl. Instrum. Methods 43, 248–268 (1966)ADSCrossRefGoogle Scholar
  8. 8.
    Y.K. Akimov, S.V. Medved, On the theory of the resolving time of scintillation counters. Nucl. Instrum. Methods 78, 151–153 (1970)ADSCrossRefGoogle Scholar
  9. 9.
    S. Derenzo, M. Weber, W. Moses, C. Dujardin, Measurements of the intrinsic rise time of common inorganic scintillators. IEEE Trans. Nucl. Sci. 47, 860–864 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    M. Moszynski, Study of light collection process from cylindrical scintillators. Nucl. Instr. Methods 134, 77–85 (1976)CrossRefGoogle Scholar
  11. 11.
    S. Derenzo, W.-S. Choong, W. Moses, Fundamental limits of scintillation detector timing precision. Phys. Med. Biol. 59, 3261–3286 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Siefert et al., A comprehensive model to predict the timing resolution of SiPM-based scintillation detectors: theory and experimental validation. IEEE Trans. Nucl. Sci. 59, 190–204 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    A. Schwarzschild, A survey of the latest developments in delayed coincidence measurements. Nucl. Instr. Methods 21, 1–16 (1963)CrossRefGoogle Scholar
  14. 14.
    M.V. Nemallapudi et al., Sub-100 ps coincidence tme resolution for positron emission tomography with LSO:Ce codoped with Ca. Phys. Med. Biol. 60, 4635–4649 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Gundacker et al., State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. J. Instrum. 11, 08008 (2016)CrossRefGoogle Scholar
  16. 16.
    E. Pratiwi, K. Kamada, S. Yamamoto, M.N. Ullah, J.-Y. Yeom, A. Yoshikawa, J.H. Park, Studies on sub-millimeter LYSO:Ce, Ce:GAGG, and a new Ce:GFAG block detector for PET using digital silicon photomultiplier. Nucl. Instr. Methods 911, 115–122 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    S. Gundacker, Dissertation, Vienna University of Technology, 2014Google Scholar
  18. 18.
    A. Leroy, P.-G. Rancoita, Principles of Radiation Interaction in Matter and Detection (Word Scientific Publishing Co Pvt Ltd, New Jersey, 2016)CrossRefGoogle Scholar
  19. 19.
    Technical Proposal for a MIP Timing Detector in the CMS experiment Phase 2 upgrade, Tech. Rep. CERN-LHCC-2017-027. LHCC-P-009, CERN, Geneva (Dec 2017)Google Scholar
  20. 20.
    Y.F. Yang, P. Dokhale, Depth of interaction resolution measurements for a high-resolution PET detector using position-sensitive avalanche photodiodes. Phys. Med. Biol. 51, 2131–2142 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Moszunski, C. Gresset, J. Vacher, R. Odry, Timing properties of BGO scintillator. Nucl. Instr. Methods 188, 403–409 (1981)CrossRefGoogle Scholar
  22. 22.
    J. Petzoldt, K. Romer et al, in Fast Timing with BGO (and Other Scintillators) on Digital Silicon Photomultipliers for Prompt Gamma-Imaging, IEEE 978-1-4799-6097 (2014)Google Scholar
  23. 23.
    R. Martinez Turtos, S. Gundacker, E. Auffray, P. Lecoq, Towards a metamaterial approach for fast timing in PET: Experimental proof-of-concept. Phys. Med. Biol. 64, 185018 (2019). CrossRefGoogle Scholar
  24. 24.
    A. Mazzi, Private communication, March 2018Google Scholar
  25. 25.
    N. Kratochwil, S. Gundacker, M. Lucchini, E. Auffray, at VCI 2019 Vienna, Austria, 18–22 February 2019Google Scholar
  26. 26.
    P.B. Lyons, J. Stevens, Time response of plastic scintillators. Nucl. Instr. Methods 114, 313–320 (1974)CrossRefGoogle Scholar
  27. 27.
    B. Sipp, J. Miehe, Fluorescence self-absorption effect and time resolution in scintillator counters. Nucl. Instr. Methods 114, 255–262 (1974)CrossRefGoogle Scholar
  28. 28.
    M. Moszynski, Study of light collection process from cylindrical scintillators. Nucl. Instr. Methods 134, 77–85 (1976)CrossRefGoogle Scholar
  29. 29.
    M. Moszynski, B. Bengston, Light pulse shapes from plastic scintillators. Nucl. Instr. Methods 142, 417–434 (1976)CrossRefGoogle Scholar
  30. 30.
  31. 31.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Research Institute for Nuclear ProblemsBelarusian State UniversityMinskBelarus
  2. 2.Semiconductor Physics DepartmentVilnius UniversityVilniusLithuania
  3. 3.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations