Wide-Band-Gap Semiconductor Scintillators

Part of the Particle Acceleration and Detection book series (PARTICLE)


Conductive semiconductor radiation detectors are successfully used in many applications. This chapter is focused on exploitation of semiconductors, especially wide-band-gap semiconductors, as scintillators. The semiconductor scintillators are prospective for fast radiation detectors. Attempts to use bulk and nanostructured semiconductor scintillators are reviewed. The prospective of using diamonds for fast timing applications is especially addressed.


  1. 1.
    G. Lutz, Semiconductor Radiation Detectors: Device Physics (Springer, Berlin, 2007)zbMATHCrossRefGoogle Scholar
  2. 2.
    T. Schlesinger et al., Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R. Rep. 32(4–5), 103–189 (2001)CrossRefGoogle Scholar
  3. 3.
    T. Takahashi, S. Watanabe, Recent progress in CdTe and CdZnTe detectors. IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    S. Del Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, P. Ubertini, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9(5), 3491–3526 (2009)CrossRefGoogle Scholar
  5. 5.
    W.C. Barber, J.C. Wessel, E. Nygard, J.S. Iwanczyk, Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications. Nucl. Instrum. Methods Phys. Res. Sect. 784, 531–537 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    J. Grant et al., Wide bandgap semiconductor detectors for harsh radiation environments. Nucl. Instrum. Methods Phys. Res. Sect. A 546(1–2), 213–217 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    P.J. Sellin, J. Vaitkus, New materials for radiation hard semiconductor dectectors. Nucl. Instrum. Methods Phys. Res. Sect. 557(2), 479–489 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    J. Grant et al., GaN as a radiation hard particle detector. Nucl. Instrum. Methods Phys. Res. Sect. A 576(1), 60–65 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    J. Wang, P. Mulligan, L. Brillson, L.R. Cao, Review of using gallium nitride for ionizing radiation detection. Appl. Phys. Rev. 2(3), 031102 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    E. Gaubas et al., In situ characterization of radiation sensors based on GaN LED structure by pulsed capacitance technique and luminescence spectroscopy. Sensors Actuators A Phys. 267, 194–199 (2017)CrossRefGoogle Scholar
  11. 11.
    E. Gaubas et al., Pulsed photo-ionization spectroscopy of traps in as-grown and neutron irradiated ammonothermally synthesized GaN. Sci. Rep. 9(1), 1473 (2019)ADSCrossRefGoogle Scholar
  12. 12.
    Ceponis et al., Evolution of scintillation and electrical characteristics of AlGaN double-response sensors during proton irradiation. Sensors 19(15), 3388 (2019)CrossRefGoogle Scholar
  13. 13.
    F. Nava, G. Bertuccio, A. Cavallini, E. Vittone, Silicon carbide and its use as a radiation detector material. Meas. Sci. Technol. 19(10), 102001 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    O. Adriani et al., CLASSiC: Cherenkov light detection with silicon carbide. Nucl. Instrum. Methods Phys. Res. Sect. 845, 439–442 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    V. Ryzhikov, N. Starzhinskiy, L. Gal’chinetskii, P. Gashin, D. Kozin, E. Danshin, New semiconductor scintillators ZnSe(Te,O) and integrated radiation detectors based thereon. IEEE Trans. Nucl. Sci. 48(3), 356–359 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    W.G. Lee et al., Particularities of ZnSe-based scintillators for a spectrometry of charged particles and gamma quanta. J. Korean Phys. Soc. 48(1), 47–50 (2006)CrossRefGoogle Scholar
  17. 17.
    S. Jagtap, P. Chopade, S. Tadepalli, A. Bhalerao, S. Gosavi, A review on the progress of ZnSe as inorganic scintillator. Opto-Electron. Rev. 27(1), 90–103 (2019)ADSCrossRefGoogle Scholar
  18. 18.
    V. Ryzhikov, G. Tamulaitis, N. Starzhinskiy, L. Gal’chinetskii, A. Novickovas, K. Kazlauskas, Luminescence dynamics in ZnSeTe scintillators. J. Lumin. 101(1–2), 45–53 (2003)CrossRefGoogle Scholar
  19. 19.
    S.E. Derenzo, M.J. Weber, M.K. Klintenberg, Temperature dependence of the fast, near-band-edge scintillation from CuI, HgI2, PbI2, ZnO:Ga and CdS:In. Nucl. Instrum. Methods Phys. Res. Sect. 486(1–2), 214–219 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    J.S. Neal, L.A. Boatner, N.C. Giles, L.E. Halliburton, S.E. Derenzo, E.D. Bourret-Courchesne, Comparative investigation of the performance of ZnO-based scintillators for use as α-particle detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 568(2), 803–809 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    E.D. Bourret-Courchesne, S.E. Derenzo, M.J. Weber, Development of ZnO:Ga as an ultra-fast scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 601(3), 358–363 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    S.E. Derenzo, E. Bourret-Courshesne, G. Bizarri, A. Canning, Bright and ultra-fast scintillation from a semiconductor? Nucl. Instrum. Methods Phys. Res. Sect. A 805, 36–40 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Z.I. Kolar, W. den Hollander, 2003: A centennial of spinthariscope and scintillation counting. Appl. Radiat. Isot. 61(2–3), 261–266 (2004)CrossRefGoogle Scholar
  24. 24.
    A.I. Ekimov, A.A. Onushchenko, Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 34(6), 345–349 (1981)ADSGoogle Scholar
  25. 25.
    A.I. Ekimov, A.I. Efros, A.L. Onushchenko, Quantum size effect in semiconductor microcrystals. Solid State Commun. 56(11), 921–924 (1985)ADSCrossRefGoogle Scholar
  26. 26.
    A.P. Alivisatos, A.L. Harris, N.J. Levinos, M.L. Steigerwald, L.E. Brus, Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum. J. Chem. Phys. 89(7), 4001–4011 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    M.G. Bawendi, M.L. Steigerwald, L.E. Brus, The quantum mechanics of larger semiconductor clusters (‘quantum dots’). Annu. Rev. Phys. Chem. 41(1), 477–496 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    J.Y. Kim, O. Voznyy, D. Zhitomirsky, E.H. Sargent, 25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances. Adv. Mater. 25(36), 4986–5010 (2013)CrossRefGoogle Scholar
  29. 29.
    Z. Yu, J. Li, D.B. O’Connor, L.-W. Wang, P.F. Barbara, Large resonant stokes shift in CdS nanocrystals. J. Phys. Chem. B 107(24), 5670–5674 (2003)CrossRefGoogle Scholar
  30. 30.
    F. Meinardi et al., Large-area luminescent solar concentrators based on ‘stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 8(5), 392–399 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    T. Vossmeyer et al., CdS nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 98(31), 7665–7673 (1994)CrossRefGoogle Scholar
  32. 32.
    C. de Mello Donegá, R. Koole, Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots. J. Phys. Chem. C 113(16), 6511–6520 (2009)CrossRefGoogle Scholar
  33. 33.
    S.F. Wuister, C. de Mello Donegá, A. Meijerink, Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media. J. Chem. Phys. 121(9), 4310–4315 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    C. Dujardin, D. Amans, A. Belsky, F. Chaput, G. Ledoux, A. Pillonnet, Luminescence and scintillation properties at the nanoscale. IEEE Trans. Nucl. Sci. 57(3), 1348–1354 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    W. Nan et al., Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 134(48), 19685–19693 (2012)CrossRefGoogle Scholar
  36. 36.
    L.-Y. Chena, H.-L. Chou, C.-H. Chenc, C.-H. Tseng, Surface modification of CdSe and CdS quantum dots-experimental and density function theory investigation, in Nanocrystals – Synthesis, Characterization and Applications, (InTech, Rijeka, 2012)Google Scholar
  37. 37.
    Y. Chen et al., ‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130(15), 5026–5027 (2008)CrossRefGoogle Scholar
  38. 38.
    R.M. Turtos et al., Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation. J. Instrum. 11(10), P10015–P10015 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Ithurria, M.D. Tessier, B. Mahler, R.P.S.M. Lobo, B. Dubertret, A.L. Efros, Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10(12), 936–941 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    A. Hospodková et al., InGaN/GaN multiple quantum well for fast scintillation application: Radioluminescence and photoluminescence study. Nanotechnology 25(45), 455501 (2014)CrossRefGoogle Scholar
  41. 41.
    T. Hubáček et al., Advancement toward ultra-thick and bright InGaN/GaN structures with a high number of QWs. CrystEngComm 21(2), 356–362 (2019)CrossRefGoogle Scholar
  42. 42.
    G. Toci et al., InGaN/GaN multiple quantum well for superfast scintillation application: Photoluminescence measurements of the picosecond rise time and excitation density effect. J. Lumin. 208, 119–124 (2019)CrossRefGoogle Scholar
  43. 43.
    J. Wilkinson, K.B. Ucer, R.T. Williams, Picosecond excitonic luminescence in ZnO and other wide-gap semiconductors. Radiat. Meas. 38(4–6), 501–505 (2004)CrossRefGoogle Scholar
  44. 44.
    G. Xiong, J. Wilkinson, K.B. Ucer, R.T. Williams, Giant oscillator strength of excitons in bulk and nanostructured systems. J. Lumin. 112, 1–4), 1–6 (2005)CrossRefGoogle Scholar
  45. 45.
    A.N. Vasil’ev, Y. Fang, V.V. Mikhailin, Impact production of secondary electronic excitations in insulators: Multiple-parabolic-branch band model. Phys. Rev. B 60(8), 5340–5347 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    G. Bizarri, W.W. Moses, J. Singh, A.N. Vasil’ev, R.T. Williams, An analytical model of nonproportional scintillator light yield in terms of recombination rates. J. Appl. Phys. 105(4), 044507 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    A.-L. Bulin, A. Vasil’ev, A. Belsky, D. Amans, G. Ledoux, C. Dujardin, Modelling energy deposition in nanoscintillators to predict the efficiency of the x-ray-induced photodynamic effect. Nanoscale 7(13), 5744–5751 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    V.I. Klimov, A.A. Mikhailovsky, D.W. McBranch, C.A. Leatherdale, M.G. Bawendi, Quantization of multiparticle auger rates in semiconductor quantum dots. Science (80-. ) 28, 1011–1013 (2000)ADSCrossRefGoogle Scholar
  49. 49.
    S.E. Létant, T.-F. Wang, Study of porous glass doped with quantum dots or laser dyes under alpha irradiation. Appl. Phys. Lett. 88(10), 103110 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    S.E. Létant, T.-F. Wang, Semiconductor quantum dot scintillation under γ-ray irradiation. Nano Lett. 6(12), 2877–2880 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    H. Burešová et al., Preparation and luminescence properties of ZnO:Ga – Polystyrene composite scintillator. Opt. Express 24(14), 15298 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    R.M. Turtos et al., Timing performance of ZnO:Ga nanopowder composite scintillators. Phys. Status Solidi Rapid Res. Lett. 10(11), 843–847 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    C.C. Stoumpos et al., Crystal growth of the perovskite semiconductor CsPbBr 3: A new material for high-energy radiation detection. Cryst. Growth Des. 13(7), 2722–2727 (2013)CrossRefGoogle Scholar
  54. 54.
    K. Tomanová et al., On the structure, synthesis, and characterization of ultrafast blue-emitting CsPbBr 3 nanoplatelets. APL Mater. 7(1), 011104 (2019)ADSCrossRefGoogle Scholar
  55. 55.
    R.M. Turtos et al., On the use of CdSe scintillating nanoplatelets as time taggers for high-energy gamma detection. npj 2D Mater. Appl. 3, 1–10 (2019)CrossRefGoogle Scholar
  56. 56.
    C. Dujardin et al., Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 65(8), 1977–1997 (2018)ADSCrossRefGoogle Scholar
  57. 57.
    F. Maddalena et al., Inorganic, organic, and perovskite halides with nanotechnology for high–light yield X- and γ-ray scintillators. Crystals 9(2), 88 (2019)CrossRefGoogle Scholar
  58. 58.
    H. Kagan, Diamond radiation detectors may be forever! Nucl. Instrum. Methods Phys. Res. Sect. A 546(1–2), 222–227 (2005)ADSCrossRefGoogle Scholar
  59. 59.
    M. Pomorski et al., Development of single-crystal CVD-diamond detectors for spectroscopy and timing. Phys. Status Solidi 203(12), 3152–3160 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    M. Ciobanu et al., In-beam diamond start detectors. IEEE Trans. Nucl. Sci. 58(4), 2073–2083 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    H. Frais-Kolbl, E. Griesmayer, H. Kagan, H. Pernegger, A fast low-noise charged-particle CVD diamond detector. IEEE Trans. Nucl. Sci. 51(6), 3833–3837 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    H. Pernegger et al., Charge-carrier properties in synthetic single-crystal diamond measured with the transient-current technique. J. Appl. Phys. 97(7), 073704 (2005)ADSCrossRefGoogle Scholar
  63. 63.
    D. Husson et al., Neutron irradiation of CVD diamond samples for tracking detectors. Nucl. Instrum. Methods Phys. Res. Sect. 388(3), 421–426 (1997)ADSCrossRefGoogle Scholar
  64. 64.
    D. Meier et al., Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC. Nucl. Instrum. Methods Phys. Res. Sect. A 426(1), 173–180 (1999)ADSCrossRefGoogle Scholar
  65. 65.
    P. Kavrigin, P. Finocchiaro, E. Griesmayer, E. Jericha, A. Pappalardo, C. Weiss, Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 795, 88–91 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    M. Pillon, M. Angelone, A. Krása, A.J.M. Plompen, P. Schillebeeckx, M.L. Sergi, Experimental response functions of a single-crystal diamond detector for 5–20.5MeV neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A 640(1), 185–191 (2011)ADSCrossRefGoogle Scholar
  67. 67.
    C. Weiss et al., A new CVD Diamond Mosaic-Detector for (n,α) Cross-Section Measurements at the n_TOF Experiment at CERN. Nucl. Instrum. Methods Phys. Res. Sect. A 732, 190–194 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    C. Weiss, H. Frais-Kölbl, E. Griesmayer, P. Kavrigin, Ionization signals from diamond detectors in fast-neutron fields. Eur. Phys. J. A 52(9), 269 (2016)ADSCrossRefGoogle Scholar
  69. 69.
    M. Makita et al., High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation. Optica 2(10), 912 (2015)ADSCrossRefGoogle Scholar
  70. 70.
    J. Lindblom, Luminescence study of defects in synthetic as-grown and HPHT diamonds compared to natural diamonds. Am. Mineral. 90(2–3), 428–440 (2005)ADSCrossRefGoogle Scholar
  71. 71.
    A.T. Collins, The characterisation of point defects in diamond by luminescence spectroscopy. Diam. Relat. Mater. 1(5–6), 457–469 (1992)ADSCrossRefGoogle Scholar
  72. 72.
    P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detector Systems (Springer, Berlin, 2017)CrossRefGoogle Scholar
  73. 73.
    V.S. Sedov et al., Diamond-EuF 3 nanocomposites with bright orange photoluminescence. Diam. Relat. Mater. 72, 47–52 (2017)ADSCrossRefGoogle Scholar
  74. 74.
    M.V. Korjik et al., Non-linear optical phenomena in detecting materials as a possibility for fast timing in detectors of ionizing radiation. IEEE Trans. Nucl. Sci. 63(6), 2979–2984 (2016)ADSCrossRefGoogle Scholar
  75. 75.
    T. Roth, R. Laenen, Absorption of free carriers in diamond determined from the visible to the mid-infrared by femtosecond two-photon absorption spectroscopy. Opt. Commun. 189(4–6), 289–296 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Research Institute for Nuclear ProblemsBelarusian State UniversityMinskBelarus
  2. 2.Semiconductor Physics DepartmentVilnius UniversityVilniusLithuania
  3. 3.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations