Skip to main content

Free Carrier Dynamics in Scintillation Materials

  • Chapter
  • First Online:
Physics of Fast Processes in Scintillators

Abstract

This chapter presents a review of the current results on the carrier dynamics in activated and self-activated scintillators, which are obtained by using time-resolved photoluminescence spectroscopy and differential optical absorption techniques with time resolution in picosecond and subpicosecond domains. The optical techniques ensuring a high time resolution are introduced. The formation of the luminescence response to a short-pulse excitation is in a special focus. The importance of carrier trapping, peculiarities of the trapping in mixed garnet- and orthosilicate-type scintillators, and the influence of codoping on excitation transfer are discussed in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Renker, E. Lorenz, Advances in solid state photon detectors. J. Instrum. 4(4), P04004–P04004 (2009)

    Article  Google Scholar 

  2. C. Piemonte, A. Ferri, A. Gola, T. Pro, N. Serra, A. Tarolli, N. Zorzi, Characterization of the first FBK high-density cell silicon photomultiplier technology. IEEE Trans. Electron Devices 60(8), 2567–2573 (2013)

    Article  ADS  Google Scholar 

  3. C. Piemonte, F. Acerbi, A. Ferri, A. Gola, G. Paternoster, V. Regazzoni, G. Zappala, N. Zorzi, Performance of NUV-HD silicon photomultiplier technology. IEEE Trans. Electron Devices 63(3), 1111–1116 (2016)

    Article  ADS  Google Scholar 

  4. N. D’Ascenzo, W. Brockherde, S. Dreiner, A. Schwinger, A. Schmidt, Q. Xie, Design and characterization of a silicon photomultiplier in 0.35-um CMOS. IEEE J. Electron Devices Soc. 6, 74–80 (2018)

    Article  Google Scholar 

  5. A. Bornheim, M.H. Hassanshahi, M. Griffioen, J. Mao, A. Mangu, C. Peña, M. Spiropulu, S. Xie, Z. Zhang, LYSO-based precision timing detectors with SiPM readout. Nucl. Instrum. Methods Phys. Res. Sect. A 896, 75–81 (2018)

    Article  ADS  Google Scholar 

  6. A. Gola, C. Piemonte, A. Tarolli, Analog circuit for timing measurements with large area SiPMs coupled to LYSO crystals. IEEE Trans. Nucl. Sci. 60(2), 1296–1302 (2013)

    Article  ADS  Google Scholar 

  7. F. Acerbi, G. Paternoster, A. Gola, V. Regazzoni, N. Zorzi, C. Piemonte, High-density silicon photomultipliers: Performance and linearity evaluation for high efficiency and dynamic-range spplications. IEEE J. Quantum Electron. 54(2), 1–7 (2018)

    Article  Google Scholar 

  8. M. Kirm, V. Babin, E. Feldbach, S. Guizard, M. De Grazia, V. Nagirnyi, A. Vasil’ev, S. Vielhauer, Behaviour of scintillators under XUV free electron laser radiation. J. Lumin. 128(5–6), 732–734 (2008)

    Article  Google Scholar 

  9. P.-A. Douissard, T. Martin, F. Riva, E. Mathieu, Y. Zorenko, V. Savchyn, T. Zorenko, A. Fedorov, Scintillating screens for micro-imaging based on the Ce-Tb doped LuAP single crystal films. IEEE Trans. Nucl. Sci. 61(1), 433–438 (2014)

    Article  ADS  Google Scholar 

  10. G. Tamulaitis, A. Vasil’ev, M. Korzhik, A. Gola, S. Nargelas, V. Vaitkevicius, A. Fedorov, D. Kozlov, Improvement of the time resolution of radiation detectors based on Gd3Al2Ga3O12 scintillators with SiPM readout. IEEE Trans. Nucl. Sci. 66(7), 1879–1888 (2019)

    Article  ADS  Google Scholar 

  11. K.B. Ucer, G. Bizarri, A. Burger, A. Gektin, L. Trefilova, R.T. Williams, Electron thermalization and trapping rates in pure and doped alkali and alkaline-earth iodide crystals studied by picosecond optical absorption. Phys. Rev. B 89(16), 1–15 (2014)

    Article  Google Scholar 

  12. V.N. Makhov, Vacuum ultraviolet luminescence of wide band-gap solids studied using time-resolved spectroscopy with synchrotron radiation. Phys. Scr. 89(4), 044010 (2014)

    Article  ADS  Google Scholar 

  13. A. Belsky, K. Ivanovskikh, A. Vasil’ev, M.-F. Joubert, C. Dujardin, Estimation of the electron thermalization length in ionic materials. J. Phys. Chem. Lett. 4(20), 3534–3538 (2013)

    Article  Google Scholar 

  14. J. Becker et al., Time resolved luminescence spectroscopy of wide bandgap insulators. J. Electron Spectros. Relat. Phenom. 79, 99–102 (1996)

    Article  Google Scholar 

  15. I.A. Kamenskikh, V.V. Mikhailin, I.H. Munro, D.A. Shaw, I.N. Shpinkov, A.N. Vasil’ev, Decay of core holes in cesium chloride studied by the luminescence spectroscopy. J. Lumin. 72–74, 930–932 (1997)

    Article  Google Scholar 

  16. A.N. Belsky et al., Luminescence quenching as a probe for the local density of electronic excitations in insulators. J. Electron Spectrosc. Relat. Phenomena 79, 147–150 (1996)

    Article  Google Scholar 

  17. A.N. Belsky et al., Fast luminescence of undoped PbWO4 crystal. Chem. Phys. Lett. 243(5–6), 552–558 (1995)

    Article  ADS  Google Scholar 

  18. M. Itoh, M. Kamada, N. Ohno, Temperature dependence of auger-free luminescence in alkali and alkaline-earth halides. J. Phys. Soc. Jpn. 66(8), 2502–2512 (1997)

    Article  ADS  Google Scholar 

  19. M.A. Terekhin, A.N. Vasil’ev, M. Kamada, E. Nakamura, S. Kubota, Effect of quenching processes on the decay of fast luminescence from barium fluoride excited by VUV synchrotron radiation. Phys. Rev. B 52(5), 3117–3121 (1995)

    Article  ADS  Google Scholar 

  20. E. Meltchakov et al., Soft X-ray excitation of luminescence in wide bandgap crystals doped with rare-earth ions. Phys. Status Solidi 4(3), 1092–1095 (2007)

    Google Scholar 

  21. P.-A. Douissard et al., Scintillating screens for micro-imaging based on the Ce-Tb doped LuAP single crystal films. IEEE Trans. Nucl. Sci. 61(1), 433–438 (2014)

    Article  ADS  Google Scholar 

  22. M. Kirm et al., Behaviour of scintillators under XUV free electron laser radiation. J. Lumin. 128(5–6), 732–734 (2008)

    Article  Google Scholar 

  23. R.M. Turtos et al., Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation. J. Instrum. 11(10), P10015–P10015 (2016)

    Article  Google Scholar 

  24. G. Tamulaitis et al., Improvement of the time resolution of radiation detectors based on Gd3Al2Ga3O12 scintillators with SiPM readout. IEEE Trans. Nucl. Sci. 66(7), 1879–1888 (2019)

    Article  ADS  Google Scholar 

  25. K.B. Ucer, G. Bizarri, A. Burger, A. Gektin, L. Trefilova, R.T. Williams, Electron thermalization and trapping rates in pure and doped alkali and alkaline-earth iodide crystals studied by picosecond optical absorption. Phys. Rev. B 89(16), 1–15 (2014)

    Article  Google Scholar 

  26. P. Li, S. Gridin, K.B. Ucer, R.T. Williams, P.R. Menge, Picosecond absorption spectroscopy of self-trapped excitons and transient Ce states in LaBr3 and LaBr3:Ce. Phys. Rev. B 97(14), 1–18 (2018)

    Google Scholar 

  27. G. Tamulatis et al., Improvement of response time in GAGG:Ce scintillation crystals by magnesium codoping. J. Appl. Phys. 124(21), 215907 (2018)

    Article  Google Scholar 

  28. G. Tamulaitis et al., Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 870, 25–29 (2017)

    Article  ADS  Google Scholar 

  29. M.T. Lucchini et al., Measurement of non-equilibrium carriers dynamics in Ce-doped YAG, LuAG and GAGG crystals with and without Mg-codoping. J. Lumin. 194, 1–7 (2018)

    Article  Google Scholar 

  30. M. Korzhik et al., Timing properties of Ce-doped YAP and LuYAP scintillation crystals. Nucl. Instrum. Methods Phys. Res. Sect. A 927, 169–173 (2019)

    Article  ADS  Google Scholar 

  31. P. Li, S. Gridin, K.B. Ucer, R.T. Williams, P.R. Menge, Picosecond absorption spectroscopy of self-trapped excitons and Ce excited states in CeBr3 and La1-xCexBr3. Phys. Rev. B 99(10), 1–9 (2019)

    Google Scholar 

  32. C.L. Melcher, J.S. Schweitzer, Cerium-doped lutetium oxyorthosilicate: A fast, efficient new scintillator. IEEE Trans. Nucl. Sci. 39(4), 502–505 (1992)

    Article  ADS  Google Scholar 

  33. P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detector Systems (Springer, Cham, 2017)

    Book  Google Scholar 

  34. C.L. Melcher, Scintillation crystals for PET. J. Nucl. Med. 41, 1051–1055 (2000)

    Google Scholar 

  35. D.L. Bailey, D.W. Townsend, P.E. Valk, M.N. Maisey, Positron Emission Tomography (Springer, Secaucus, 2005)

    Book  Google Scholar 

  36. B. H. T. Chai, Method of enhancing performance of cerium doped lutetium yttrium orthosilicate crystals and crystals produced thereby. U.S. Patent 7166845 B1, 2007

    Google Scholar 

  37. M.A. Spurrier, P. Szupryczynski, K. Yang, A.A. Carey, C.L. Melcher, Effects of Ca2+co-doping on the scintillation properties of LSO:Ce. IEEE Trans. Nucl. Sci. 55(3), 1178–1182 (2008)

    Article  ADS  Google Scholar 

  38. K. Yang, C.L. Melcher, P.D. Rack, L.A. Eriksson, Effects of calcium codoping on charge traps in LSO:Ce crystals. IEEE Trans. Nucl. Sci. 56(5), 2960–2965 (2009)

    Article  ADS  Google Scholar 

  39. H.E. Rothfuss, C.L. Melcher, L.A. Eriksson, M.A. Spurrier Koschan, The effect of Ca2+ codoping on shallow traps in YSO:Ce scintillators. IEEE Trans. Nucl. Sci. 56(3), 958–961 (2009)

    Article  ADS  Google Scholar 

  40. S. Blahuta, A. Bessiere, B. Viana, P. Dorenbos, V. Ouspenski, Evidence and consequences of Ce4+ in LYSO:Ce,Ca and LYSO:Ce,Mg single crystals for medical imaging applications. IEEE Trans. Nucl. Sci. 60(4), 3134–3141 (2013)

    Article  ADS  Google Scholar 

  41. D. Ding, B. Liu, Y. Wu, J. Yang, G. Ren, J. Chen, Effect of yttrium on electron–phonon coupling strength of 5d state of Ce3+ ion in LYSO:Ce crystals. J. Lumin. 154, 260–266 (2014)

    Article  Google Scholar 

  42. E. Auffray et al., Excitation transfer engineering in Ce-doped oxide crystalline scintillators by codoping with alkali-earth ions. Phys. Status Solidi 215(7), 1700798 (2018)

    Article  ADS  Google Scholar 

  43. C.L. Melcher, S. Friedrich, S.P. Cramer, M.A. Spurrier, P. Szupryczynski, R. Nutt, Cerium oxidation state in LSO:Ce scintillators. IEEE Trans. Nucl. Sci. 52(5), 1809–1812 (2005)

    Article  ADS  Google Scholar 

  44. L. Ning et al., Electronic properties and 4f → 5d transitions in Ce-doped Lu2SiO5: A theoretical investigation. J. Mater. Chem. 22(27), 13723–13731 (2012)

    Article  Google Scholar 

  45. S. Blahuta et al., Defects identification and effects of annealing on Lu2(1-x)Y2xSiO5 (LYSO) single crystals for scintillation application. Materials (Basel) 4(7), 1224–1237 (2011)

    Article  ADS  Google Scholar 

  46. E. Auffray et al., Radiation damage of LSO crystals under γ- and 24GeV protons irradiation. Nucl. Instrum. Methods Phys. Res. Sect. A 721, 76–82 (2013)

    Article  ADS  Google Scholar 

  47. A.N. Belsky et al., Progress in the development of LuAlO3-based scintillators. IEEE Trans. Nucl. Sci. 48(4), 1095–1100 (2001)

    Article  ADS  Google Scholar 

  48. Y. Wu et al., On the role of Li + codoping in simultaneous improvement of light yield, decay time, and afterglow of Lu2SiO5:Ce3+ scintillation detectors. Phys. Status Solidi – Rapid Res. Lett. 13(2), 1800472 (2019)

    Article  ADS  Google Scholar 

  49. K. Kamada et al., Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators. Cryst. Growth Des. 11(10), 4484–4490 (2011)

    Article  Google Scholar 

  50. M.V. Korzhik, A general approach to increasing the radiation hardness of complex structure oxide scintillation crystals. Nucl. Instrum. Methods Phys. Res. Sect. A 500(1–3), 116–120 (2003)

    Article  ADS  Google Scholar 

  51. C.D. Brandle, Czochralski growth of oxides. J. Cryst. Growth 264(4), 593–604 (2004)

    Article  ADS  Google Scholar 

  52. M. Moszyński, T. Ludziejewski, D. Wolski, W. Klamra, L.O. Norlin, Properties of the YAG:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 345(3), 461–467 (1994)

    Article  ADS  Google Scholar 

  53. K. Kamada et al., Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds. J. Phys. D. Appl. Phys. 44(50), 505104 (2011)

    Article  Google Scholar 

  54. K. Kamada et al., Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd3Al2Ga3O12 scintillator. Opt. Mater. (Amst) 41, 63–66 (2015)

    Article  ADS  Google Scholar 

  55. M.T. Lucchini et al., Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of cerium doped Gd3Al2Ga3O12 crystals. Nucl. Instrum. Methods Phys. Res. Sect. A 816, 176–183 (2016)

    Article  ADS  Google Scholar 

  56. M.T. Lucchini et al., Timing capabilities of garnet crystals for detection of high energy charged particles. Nucl. Instrum. Methods Phys. Res. Sect. A 852, 1–9 (2017)

    Article  ADS  Google Scholar 

  57. V.V. Averkiev, J.A. Valbis, Luminescence Crystals and Convertors of Ionizing Radiation (Nauka, Novosibirsk, 1985)

    Google Scholar 

  58. M. Nikl et al., Defect engineering in Ce-doped aluminum garnet single crystal scintillators. Cryst. Growth Des. 14(9), 4827–4833 (2014)

    Article  Google Scholar 

  59. M. Nikl, A. Yoshikawa, Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Opt. Mater. 3(4), 463–481 (2015)

    Article  Google Scholar 

  60. A. Nakatsuka, A. Yoshiasa, T. Yamanaka, Cation distribution and crystal chemistry of Y3Al5−xGaxO12 (0≤x≤5) garnet solid solutions. Acta Crystallogr. Sect. B 55(3), 266–272 (1999)

    Article  Google Scholar 

  61. E. Auffray et al., Free carrier absorption in self-activated PbWO4 and Ce-doped Y3(Al0.25Ga0.75)3O12 and Gd3Al2Ga3O12 garnet scintillators. Opt. Mater. (Amst) 58, 461–465 (2016)

    Article  ADS  Google Scholar 

  62. P. Dorenbos, A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds. ECS J. Solid State Sci. Technol. 2(2), R3001–R3011 (2013)

    Article  Google Scholar 

  63. H. Suzuki, T.A. Tombrello, C.L. Melcher, C.A. Peterson, J.S. Schweitzer, The role of gadolinium in the scintillation processes of cerium-doped gadolinium oxyorthosilicate. Nucl. Instrum. Methods Phys. Res. Sect. A 346(3), 510–521 (1994)

    Article  ADS  Google Scholar 

  64. H. Suzuki, T.A. Tombrello, C.L. Melcher, J.S. Schweitzer, Energy transfer from Gd to Ce in Gd2(SiO4)O:Ce. J. Lumin. 60–61, 963–966 (1994)

    Article  Google Scholar 

  65. F. Meng, M. Koschan, Y. Wu, C.L. Melcher, Relationship between Ca2+ concentration and the properties of codoped Gd3Ga3Al2O12:Ce scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A 797, 138–143 (2015)

    Article  ADS  Google Scholar 

  66. J.M. Ogieglo, Luminescence and Energy Transfer in Garnet Scintillators (Utrecht University, Utrecht, 2012)

    Google Scholar 

  67. M. Kavatsyuk et al., Performance of the prototype of the electromagnetic calorimeter for PANDA. Nucl. Instrum. Methods Phys. Res. Sect. A 648(1), 77–91 (2011)

    Article  ADS  Google Scholar 

  68. D. del Re, Timing performance of the CMS ECAL and prospects for the future. J. Phys. Conf. Ser. 587, 012003 (2015)

    Article  Google Scholar 

  69. A.N. Vasil, ev, microtheory of scintillation in crystalline materials, in Engineering of Scintillation Materials and Radiation Technologies, (Belarus CNUM, Minsk, 2017), pp. 3–34

    Chapter  Google Scholar 

  70. S. Gundacker, E. Auffray, K. Pauwels, P. Lecoq, Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET. Phys. Med. Biol. 61(7), 2802–2837 (2016)

    Article  Google Scholar 

  71. M. Nikl, E. Mihokova, J. Pejchal, A. Vedda, Y. Zorenko, K. Nejezchleb, The antisite LuAl defect-related trap in Lu3Al5O12:Ce single crystal. Phys. Status Solidi 242(14), R119–R121 (2005)

    Article  ADS  Google Scholar 

  72. V.G. Baryshevsky et al., YAlO3:Ce-fast-acting scintillators for detection of ionizing radiation. Nucl. Instrum. Methods Phys. Res. Sect. A 58(2), 291–293 (1991)

    Article  Google Scholar 

  73. M.V. Korzhik, O.V. Misevich, A.A. Fyodorov, YAlO3:Ce scintillators: Application for X- and soft γ-ray detection. Nucl. Instrum. Methods Phys. Res. Sect. B 72(3–4), 499–501 (1992)

    Article  ADS  Google Scholar 

  74. M. Kobayashi et al., YAlO3:Ce-Am light pulsers as a gain monitor for undoped CsI detectors in a magnetic field. Nucl. Instrum. Methods Phys. Res. Sect. A 337(2–3), 355–361 (1994)

    Article  ADS  Google Scholar 

  75. M. Zhuravleva et al., Crystal growth and scintillating properties of Zr/Si-codoped YAlO3:Pr3+. IEEE Trans. Nucl. Sci. 55(3), 1476–1479 (2008)

    Article  ADS  Google Scholar 

  76. J.A. Mareš, M. Nikl, C. Pédrini, B. Moine, K. Blažek, A study of fluorescence emission of Ce3+ ions in YAlO3 crystals by the influence of doping concentration and codoping with Nd3+ and Cr3+. Mater. Chem. Phys. 32(4), 342–348 (1992)

    Article  Google Scholar 

  77. S. Petrovic, A. Kepic, M. Carson, Scintillators for PGNAA in mineral exploration. ASEG Ext. Abstr. 1, 1–6 (2018)

    Google Scholar 

  78. M. Moszyński, Inorganic scintillation detectors in γ-ray spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A 505(1–2), 101–110 (2003)

    Article  ADS  Google Scholar 

  79. V.A. Kachanov et al., Light source for energy stabilization of calorimetric detectors based on photodetectors. Nucl. Instrum. Methods Phys. Res. Sect. A 314(1), 215–218 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  80. S. Pesente et al., Detection of hidden explosives by using tagged neutron beams with sub-nanosecond time resolution. Nucl. Instrum. Methods Phys. Res. Sect. A 531(3), 657–667 (2004)

    Article  ADS  Google Scholar 

  81. A. Annenkov et al., Industrial growth of LuYAP scintillation crystals. Nucl. Instrum. Methods Phys. Res. Sect. A 537(1–2), 182–184 (2005)

    Article  ADS  Google Scholar 

  82. M. Korzhik, Physics of scintillation in oxide crystals (Belarussian State University, Minsk, 2003)

    Google Scholar 

  83. M. Nikl et al., Shallow traps and radiative recombination processes in Lu3Al5O12:Ce single crystal scintillator. Phys. Rev. B 76(19), 195121 (2007)

    Article  ADS  Google Scholar 

  84. C.R. Stanek, K.J. McClellan, M.R. Levy, R.W. Grimes, Defect behavior in rare earth REAlO3 scintillators. J. Appl. Phys. 99(11), 113518 (2006)

    Article  ADS  Google Scholar 

  85. S. Gundacker et al., State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. J. Instrum. 11(8), P08008–P08008 (2016)

    Article  Google Scholar 

  86. H. Nishimura, M. Sakata, T. Tsujimoto, M. Nakayama, Origin of the 4.1-eV luminescence in pure CsI scintillator. Phys. Rev. B 51(4), 2167–2172 (1995)

    Article  ADS  Google Scholar 

  87. A.N. Belsky et al., Experimental study of the excitation threshold of fast intrinsic luminescence of CsI. Phys. Rev. B 49(18), 13197–13200 (1994)

    Article  ADS  Google Scholar 

  88. G. Bizarri, P. Dorenbos, Charge carrier and exciton dynamics in LaBr3:Ce3+ scintillators: Experiment and model. Phys. Rev. B 75(18), 184302 (2007)

    Article  ADS  Google Scholar 

  89. U. Rogulis et al., Magnetic resonance investigations of LaCl3:Ce3+ scintillators. Radiat. Eff. Defects Solids 157(6–12), 951–955 (2002)

    Article  ADS  Google Scholar 

  90. D.N. ter Weele, D.R. Schaart, P. Dorenbos, Intrinsic scintillation pulse shape measurements by means of picosecond x-ray excitation for fast timing applications. Nucl. Instrum. Methods Phys. Res. Sect. A 767, 206–211 (2014)

    Article  ADS  Google Scholar 

  91. J. Glodo et al., Effects of Ce concentration on scintillation properties of LaBr3:Ce. IEEE Trans. Nucl. Sci. 52(5), 1805–1808 (2005)

    Article  ADS  Google Scholar 

  92. S. Seifert, J.H.L. Steenbergen, H.T. van Dam, D.R. Schaart, Accurate measurement of the rise and decay times of fast scintillators with solid state photon counters. J. Instrum. 7(9), P09004–P09004 (2012)

    Article  Google Scholar 

  93. R.W. Novotny et al., Radiation hardness and recovery processes of PWO crystals at -25degC. IEEE Trans. Nucl. Sci. 55(3), 1283–1288 (2008)

    Article  ADS  Google Scholar 

  94. S. Burachas et al., Lead tungstate crystals for the ALICE/CERN experiment. Nucl. Instrum. Methods Phys. Res. Sect. A 486(1–2), 83–88 (2002)

    Article  ADS  Google Scholar 

  95. A. Breskin, The CERN Large Hadron Collider: Accelerator and Experiments (CERN, Geneva, 2009)

    Google Scholar 

  96. R.W. Novotny, Fast and compact lead tungstate-based electromagnetic calorimeter for the PANDA detector at GSI. IEEE Trans. Nucl. Sci. 51(6), 3076–3080 (2004)

    Article  ADS  Google Scholar 

  97. M. Nikl, Wide band gap scintillation materials: Progress in the technology and material understanding. Phys. Status Solidi 178(2), 595–620 (2000)

    Article  ADS  Google Scholar 

  98. A. Annenkov, M. Korzhik, P. Lecoq, Lead tungstate scintillation material. Nucl. Instrum. Methods Phys. Res. Sect. A 490(1–2), 30–50 (2002)

    Article  ADS  Google Scholar 

  99. W. van Loo, Phys. Stat. Sol. (a) 27, 565 (1979); 28, 227 (1979)

    Google Scholar 

  100. J.A. Groenink, G. Blasse, Some new observations on the luminescence of PbMoO4 and PbWO4. J. Solid State Chem. 32(1), 9–20 (1980)

    Article  ADS  Google Scholar 

  101. E. Auffray et al., Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals. J. Lumin. 178, 54–60 (2016)

    Article  Google Scholar 

  102. M. Nikl et al., Excitonic emission of scheelite tungstates AWO4 (A=Pb, Ca, Ba, Sr). J. Lumin. 87–89, 1136–1139 (2000)

    Article  Google Scholar 

  103. M. Itoh, T. Katagiri, Intrinsic luminescence from self-trapped excitons in Bi4Ge3O12 and Bi12GeO20: Decay kinetics and multiplication of electronic excitations. J. Phys. Soc. Jpn. 79(7), 074717 (2010)

    Article  ADS  Google Scholar 

  104. M.J. Weber, R.R. Monchamp, Luminescence of Bi4Ge3O12 : Spectral and decay properties. J. Appl. Phys. 44(12), 5495–5499 (1973)

    Article  ADS  Google Scholar 

  105. R. Moncorge, B. Jacquier, G. Boulon, F. Gaume-Mahn, J. Janin, Electronic structure and photoluminescence processes in Bi4Ge3O12 single crystal. J. Lumin. 12–13, 467–472 (1976)

    Article  Google Scholar 

  106. W.W. Moses, Time of flight in pet revisited. IEEE Trans. Nucl. Sci. 50(5), 1325–1330 (2003)

    Article  ADS  Google Scholar 

  107. S. Vandenberghe, E. Mikhaylova, E. D’Hoe, P. Mollet, J.S. Karp, Recent developments in time-of-flight PET. EJNMMI Phys. 3(1), 3 (2016)

    Article  Google Scholar 

  108. C. Dujardin et al., Spectroscopic properties of CeF3 and LuF3:Ce3+ thin films grown by molecular beam epitaxy. Opt. Mater. (Amst) 16(1–2), 69–76 (2001)

    Article  ADS  Google Scholar 

  109. C. Pedrini, B. Moine, J.C. Gacon, B. Jacquier, One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals. J. Phys. Condens. Matter 4(24), 5461–5470 (1992)

    Article  ADS  Google Scholar 

  110. E. Auffray et al., Picosecond transient absorption rise time for ultrafast tagging of the interaction of ionizing radiation with scintillating crystals in high energy physics experiments. J. Instrum. 9(7), P07017–P07017 (2014)

    Article  Google Scholar 

  111. C. Pedrini, C. Dujardin, J.C. Gâcon, A.N. Belsky, A.N. Vasil’ev, A.G. Petrosyan, Cerium-doped fluorescent and scintillating ionic crystals. Radiat. Eff. Defects Solids 154(3–4), 277–286 (2001)

    Article  ADS  Google Scholar 

  112. I.A. Kamenskikh et al., LSO-Ce fluorescence spectra and kinetics for UV, VUV and X-ray excitation. Radiat. Eff. Defects Solids 135(1–4), 391–396 (1995)

    Article  Google Scholar 

  113. R. Kirkin, V.V. Mikhailin, A.N. Vasil’ev, Recombination of correlated electron–hole pairs with account of hot capture with emission of optical phonons. IEEE Trans. Nucl. Sci. 59(5), 2057–2064 (2012)

    Article  ADS  Google Scholar 

  114. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy, The high-throughput highway to computational materials design. Nat. Mater. 12(3), 191–201 (2013)

    Article  ADS  Google Scholar 

  115. S. Curtarolo et al., AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012)

    Article  Google Scholar 

  116. N.C. Carvalho, J.-M. Le Floch, J. Krupka, M.E. Tobar, Multi-mode technique for the determination of the biaxial Y2SiO5 permittivity tensor from 300 to 6K. Appl. Phys. Lett. 106(19), 192904 (2015)

    Article  ADS  Google Scholar 

  117. H. Huang, Q. Li, X. Lu, Y. Qian, Y. Wu, R.T. Williams, Role of hot electron transport in scintillators: A theoretical study. Phys. Status Solidi – Rapid Res. Lett. 10(10), 762–768 (2016)

    Article  ADS  Google Scholar 

  118. M.P. Prange, Y. Xie, L.W. Campbell, F. Gao, S. Kerisit, Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality. J. Appl. Phys. 122(23), 234504 (2017)

    Article  ADS  Google Scholar 

  119. A.N. Vasil’ev, A.V. Gektin, Multiscale approach to estimation of scintillation characteristics. IEEE Trans. Nucl. Sci. 61(1), 235–245 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korzhik, M., Tamulaitis, G., Vasil’ev, A.N. (2020). Free Carrier Dynamics in Scintillation Materials. In: Physics of Fast Processes in Scintillators. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-030-21966-6_5

Download citation

Publish with us

Policies and ethics