Shallow Traps in Scintillation Materials

Part of the Particle Acceleration and Detection book series (PARTICLE)


This chapter is focused on the shallow traps in scintillators with various crystal structures. Even in single crystals of scintillating materials, defects inevitably occur and play an important role in the excitation transfer phenomena. Special attention in this chapter is paid to the consequences of the modulation of the conduction band bottom due to random distribution of the ions in mixed crystals.


  1. 1.
    M. Bom, F. Henecker, A. Hofstaetter, et al., Shallow electron traps in the scintillator material PbWO4 to thermally stimulated luminescence, in Proceedings of the International Workshop on Tungstate Crystals, (Rome, 1998), pp. 139–146Google Scholar
  2. 2.
    M. Böhm, F. Henecker, A. Hofstaetter, et al., Electron traps in the scintillator material PbWO4 and their correlation to the thermally stimulated luminescence. Radiat. Eff. Defects Solids 150, 413–417 (1999)CrossRefGoogle Scholar
  3. 3.
    V.V. Laguta, J. Rosa, M.I. Zaritski, et al., Polaronic WO4 3− centers in PbWO4 single crystals. J. Phys. Condens. Matter 10, 7293–7302 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    K.V. den Eechout, A. Bos, D. Poelman, P. Smet, Revealing trap depth distribution in persistent phosphors. Phys. Rev. B 87, 045126 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    A. Vedda, M. Nikl, M. Fasoli, E. Mihokova, J. Pejchal, M. Dusek, G. Ren, C.R. Stanek, K.J. McClellan, D.D. Byler, Thermally stimulated tunneling in rare-earth-doped oxyorthosilicates. Phys. Rev. B Condens. Matter Mater. Phys. 78, 1–8 (2008)CrossRefGoogle Scholar
  6. 6.
    E. Auffray, M. Korjik, Limits of inorganic crystalline materials to operate in a high dose rate irradiation environment at collider experiments. IEEE Trans. Nucl. Sci. 63, 552–563 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    A.J.J. Bos, Thermoluminescence as a research tool to investigate luminescence mechanisms. Materials 10, 1357–1378 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    K.V.R. Murthy, Thermoluminescence and its applications: A review. Defect Diffus. Forum 347, 35–73 (2013)CrossRefGoogle Scholar
  9. 9.
    F. Daniels, C. Boyd, D. Saunders, Thermoluminescence as a research tool. Science 117, 343–349 (1953)ADSCrossRefGoogle Scholar
  10. 10.
    A.J.J. Bos, Theory of thermoluminescence. Radiat. Meas. 41, 45–56 (2006)CrossRefGoogle Scholar
  11. 11.
    S.W.S. McKeever, Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1988)Google Scholar
  12. 12.
    R. Chen, V. Pagonis, J.L. Lawless, Evaluated thermoluminescence trapping parameters-What do they really mean? Radiat. Meas. 91, 21–27 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Annenkov, M. Korzhik, P. Lecoq, Lead tungstate scintillation material. Nucl. Instrum. Meth. Phys. Res. A 490, 30–50 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    E. Auffray et al., Excitation transfer engineering in Ce-doped oxide crystalline scintillators by codoping with alkali-earth ions. Phys. Status Solidi A 215, 1700798 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    M. Korzhik, P. Lecoq, A. Gektin, Inorganic Scintillators for Detector Systems (Springer, Cham, 2016)Google Scholar
  16. 16.
    V. Laguta, M. Buryi, S. Tkachenko, P. Arhipov, I. Gerasymov, O. Sidletskiy, M. Nikl, Oxygen-vacancy centers in Y3Al5O12 garnet crystals: Electron paramagnetic resonance and dielectric spectroscopy study, Arxiv:1812.11873Google Scholar
  17. 17.
    M. Kitara, H. Zen, K. Kamada, et al., Visualizing hidden electron trap levels in Gd3Al2Ga3O12:Ce using a mid-infrared free-electron laser. Appl. Phys. Lett. 112, 031112 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    W. Kuang, M. V. Fock, Luminescence Centers in Crystals, ed. by N.G. Basov (Consultants Bureau, New York/London, 1976), p. 40Google Scholar
  19. 19.
    M.V. Fok, Luminescence problem. J. Sov. Laser Res. 4, 145–178 (1983)CrossRefGoogle Scholar
  20. 20.
    M. Nikl, E. Mihokova, J. Pejchal, A. Vedda, Y. Zorenko, K. Nejezchleb, The antisite LuAl defect-related trap in Lu3Al5O12: Ce single crystal. Phys. Status Solidi 242, R119–R121 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in galides and chalcogenides. Acta Crystallogr. 32, 751–767 (1976)CrossRefGoogle Scholar
  22. 22.
    A. Nakatsuka, A. Yoshiasa, T. Yamanaka, Cation distribution and crystal chemistry of Y3Al5-xGaxO12 (0 ≤ x ≤ 5) garnet solid solution. Acta Crystallogr. Sect. B: Struct. Sci. 55, 266–272 (1999)CrossRefGoogle Scholar
  23. 23.
    V. Laguta, M. Buryi, J. Pejchal, V. Babin, M. Nikl, Hole self-trapping in Y3Al5O12 and Lu3Al5O12 garnet crystals. Phys. Rev. Appl. 10, 034058 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    M. Nikl, A. Vedda, M. Fasoli, I. Fontana, V.V. Laguta, E. Mihokova, J. Pejchal, J. Rosa, K. Nejezchleb, Shallow traps and radiative recombination processes in Lu3Al5O12: Ce single crystal scintillator. Phys. Rev. B 76, 195121 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    M. Nikl, V. Laguta, A. Vedda, Complex oxide scintillators: Material defects and scintillation performance. Phys. Status Solidi B 245(9), 1701–1722 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    M.K. Ashurov, Y.K. Voronko, V.V. Osiko, A.A. Sobol, M.I. Timoshechkin, Spectroscopic study of stoichiometry deviation in crystals with garnet structure. Phys. Status Solidi A 42, 101–110 (1977)ADSCrossRefGoogle Scholar
  27. 27.
    V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, P.M. Nanau, High-resolution optical spectroscopy of YAG:Nd: A test for structural and distribution models. Phys. Rev. B 51, 8–17 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    A. Lempicki, J. Glodo, Ce-doped scintillators: LSO and LuAP. Nucl. Inst. Methods Phys. Res. A 416, 333–344 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    V.V. Laguta, M. Nikl, S. Zazubovich, Photothermally stimulated creation of electron and hole centers in Ce3+-doped Y2SiO5 single crystals. Opt. Mater. (Amst). 36, 1636–1641 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    A. Belsky, A. Gektin, S. Gridin, A.N. Vasil’ev, Electronic and optical properties of scintillators based on mixed ionic crystals, in Engineering of Scintillation Materials and Radiation Technologies, (Springer, Cham, 2017), pp. 63–82Google Scholar
  31. 31.
    M. Korzhik, V. Mechinsky, E. Tratsiak, G. Dosovitskiy, P. Sokolov, V. Alenkov, O. Buzanov, A. Fedorov, L. Grigorjeva, A. Zolotarjovs, V. Dormenev, A. Dosovitskiy, D. Agrawal, T. Anniyev, M. Vasilyev, V. Khabashesku, Nanoengineered Gd3Al2Ga3O12 scintillation materials with disordered garnet structure for novel detectors of ionizing radiation. Cryst. Res. Technol. 54, 1800172 (2019)CrossRefGoogle Scholar
  32. 32.
    E. Auffray, R. Augulis, A. Borisevich, V. Gulbinas, A. Fedorov, M. Korjik, M.T. Lucchini, V. Mechinsky, S. Nargelas, E. Songaila, G. Tamulaitis, A. Vaitkevičius, S. Zazubovich, Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals. J. Lumin. 178, 54–60 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Fasoli, A. Vedda, M. Nikl, C. Jiang, B.P. Uberuaga, D.A. Andersson, K.J. McClellan, C.R. Stanek, Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 1–4 (2011)CrossRefGoogle Scholar
  34. 34.
    G. Tamulaitis et al., Improvement of the time resolution of radiation detectors based on Gd3Al2Ga3O12 scintillators with SiPM readout. IEEE Trans. Nucl. Sci. 66, 1879–1888 (2019)ADSCrossRefGoogle Scholar
  35. 35.
    A. Belsky, A. Gektin, A.N. Vasil’ev, Influence of disorder in scintillating solid solutions on thermalization and recombination of electronic excitations, Phys. Status Solidi B, submitted in 2019Google Scholar
  36. 36.
    A.V. Gektin, A.N. Belsky, A.N. Vasil’ev, Scintillation efficiency improvement by mixed crystal use. IEEE Trans. Nucl. Sci. 61, 262–270 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Z. Yan, T. Shalapska, E.D. Bourret, Czochralski growth of the mixed halides BaBrCl and BaBrCl:Eu. J. Cryst. Growth 435, 42–45 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    U.S. Pat. No. 7,084,403 General Electric Company, Scintillator compositions, and related processes and articles of manufacture A.M. SrivastavaGoogle Scholar
  39. 39.
    L. Swiderski, M. Moszynski, A. Nassalski, A. Syntfeld-Kazuch, W. Czarnacki, W. Klamra, V.A. Kozlov, Scintillation properties of undoped CsI and CsI doped with CsBr. IEEE Trans. Nucl. Sci. 55, 1241–1245 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    A. Giaz, G. Hull, V. Fossati, N. Cherepy, F. Camera, et al., Preliminary investigation of scintillator materials properties: SrI2: Eu, CeBr3 and GYGAG: Ce for gamma rays up to 9 MeV. Nucl. Inst. Methods Phys. Res. A 804, 212–220 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    J. Glodo, Y. Wang, R. Shawgo, C. Brecher, R.H. Hawrami, J. Tower, K.S. Shah, New developments in scintillators for security applications. Phys. Procedia 90, 285–290 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    A. Vaitkevicius, M. Korjik, E. Tretyak, E. Trusova, G. Tamulaitis, Photoluminescence of barium and lithium silicate glasses and glass ceramics doped with rare earth ions. Int. J. Mater. Metallurgical Eng. 10 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Research Institute for Nuclear ProblemsBelarusian State UniversityMinskBelarus
  2. 2.Semiconductor Physics DepartmentVilnius UniversityVilniusLithuania
  3. 3.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations