Timing Measurements with Scintillation Pulses

Part of the Particle Acceleration and Detection book series (PARTICLE)


This chapter addresses the evolution of the scintillation pulse shape under different conditions for the energy deposit, the evaluation of the precision in timing measurements at optical pulses of different forms and the specificity of the time resolution in scintillators of different tapes.


  1. 1.
    C. Leroy, P.G. Rancoita, Principles of Radiation Interaction in Matter and Detection (Word Scientific Publishing Co, Singapore, 2016)Google Scholar
  2. 2.
    S. Gundacker, R. Turtos, E. Auffray, P. Lecoq, Precise rise and decay time measurements of inorganic scintillators by means of x-ray and 511 kev excitation. Nucl. Instrum. Methods Phys. Res. A 891, 42–52 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    S. Gundacker, Time of flight positron emission tomography towards 100 ps resolution with L(Y)SO: An experimental and theoretical analysis. J. Instrum. 8, P07014 (2013)CrossRefGoogle Scholar
  4. 4.
    The CMS Collaboration, Technical design report A MIP Timing Detector for the CMS Phase 2 Upgrade CERN-LHCC (2019)Google Scholar
  5. 5.
    P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detector Systems (Springer, Cham, 2016)Google Scholar
  6. 6.
    D. Vaisburd, O. Koroleva, S. Kharitonova, Instantaneous spectrum of passively ionized electrons in a dielectric irradiated by a high-power electron beam. Russ. Phys. J. 39(11), 1114–1121 (1996)CrossRefGoogle Scholar
  7. 7.
    E. Auffray, M. Korjik, R. Augulis, et al., Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals. J. Lumin. 178, 54–60 (2016)CrossRefGoogle Scholar
  8. 8.
    R. Novotny, D. Bremer, V. Dormenev et al., The PANDA Electromagnetic Calorimeter – A High-Resolution Detector Based on PWO-II. 10th International Conference on Inorganic Scintillators and their Applications SCINT-2009, Jeju, Korea. 8–12 June 2009, Conference RecordGoogle Scholar
  9. 9.
    A. Annenkov, M. Korzhik, P. Lecoq, Lead tungstate scintillation material. Nucl. Instrum. Methods Phys. Res. A 490, 30–50 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    M. Nikl, Wide band gap scintillation materials: Progress in the technology and material understanding. Phys. Status Solidi A 178, 59–600 (2000)CrossRefGoogle Scholar
  11. 11.
    M. Nikl, P. Bohasek, et al., Excitonic emission of scheelite tungstates AWO4 (A=Pb, Ca, Ba, Sr). J. Lumin. 87, 1136–1139 (2000)CrossRefGoogle Scholar
  12. 12.
    N. Akchurin, F. Bedeschi, A. Cardini, R. Carosi, G. Ciapetti, R. Ferrari, S. Franchino, M. Fraternali, M. Korzhik, R. Wigmans, et al., New crystals for dual-readout calorimetry. Nucl. Instrum. Methods Phys. Res. Sect. A 604, 512–526 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    D. Yvon, V. Sharyy, Patent accepted, Réf: FR N° 17/59065, 29 Sep. 2017Google Scholar
  14. 14.
    R. Post, L. Schiff, Statistical limitations on the resolving time of a scintillation counter. Phys. Rev. 80, 1113 (1950)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    C.W.E. van Eijk, Cross-luminescence. J. Lumin. 60–61, 936–941 (1994)CrossRefGoogle Scholar
  16. 16.
    M. Kavatsyuk, D. Bremer, V. Dormenev, et al, Performance of the prototype of the electromagnetic calorimeter for PANDA. Nucl. Instrum. Methods Phys. Res. Sect. A 648, 77–91 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    D. del Re, Timing performance of the CMS ECAL and prospects for the future. J. Phys. Conf. Ser. 587, 12003 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Research Institute for Nuclear ProblemsBelarusian State UniversityMinskBelarus
  2. 2.Semiconductor Physics DepartmentVilnius UniversityVilniusLithuania
  3. 3.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations