Release of Ionizing Radiation Energy in Inorganic Scintillator

Part of the Particle Acceleration and Detection book series (PARTICLE)


This chapter introduces the basic definitions and describes the energy release in the interaction of scintillation material with different kinds of ionizing radiation. The timing property of the energy deposition is under especial focus.


  1. 1.
    R.J. Moon, Inorganic crystals for the detection of high energy particles and quanta. Phys. Rev. 73, 1210 (1948)ADSCrossRefGoogle Scholar
  2. 2.
    H. Kallmann, Quantitative measurements with scintillation counters. Phys. Rev. 75, 623–626 (1949)ADSCrossRefGoogle Scholar
  3. 3.
    G.B. Collins, R.C. Hoyt, Detection of beta-rays by scintillations. Phys. Rev. 73, 1259–1260 (1948)Google Scholar
  4. 4.
    P.R. Bell, The use of anthracen as a scintillation counter. Phys. Rev. 73, 1405–1406 (1948)ADSCrossRefGoogle Scholar
  5. 5.
    H. Kallmann, Scintillation counting with solutions. Proc. Phys. Soc. (London) Letters to the Editor 78, 621–622 (1950)Google Scholar
  6. 6.
    H. Kallmann, M. Furst, Fluorescence of solutions bombarded with high energy radiation (energy transport in liquids). Phys. Rev. 79, 857–870 (1950)ADSCrossRefGoogle Scholar
  7. 7.
    H. Kallmann, M. Furst, Fluorescence of solutions bombarded with high energy radiation (energy transport in liquids). Part II. Phys. Rev. 81, 853–864 (1951)ADSCrossRefGoogle Scholar
  8. 8.
    H. Kallmann, M. Furst, High energy induced fluorescence in organic liquid solutions (energy transport in liquids). Part III. Phys. Rev. 85, 816–825 (1951)Google Scholar
  9. 9.
    G.T. Reynolds, Scintillation counting. Nucleonics 6, 488–489 (1950)Google Scholar
  10. 10.
    R.K. Swank, Recent advances in theory of scintillation phosphors. Nucleonics 12, 4–22 (1954)Google Scholar
  11. 11.
    ATLAS Technical design report, CERN (1999)Google Scholar
  12. 12.
    J.A. Nikkel et al., Liquefied noble gas (LNG) detectors for detection of nuclear matter. J. Instrum. 7, C03007 (2011)Google Scholar
  13. 13.
    M.G. Schorr, F.L. Torney, Solid non-crystalline scintillation phosphors. Proc. Phys. Soc. (London) Letters to the Editor 80, 474–475 (1950)Google Scholar
  14. 14.
    T.R. Martinez, S. Gundacker, E. Auffray, P. Lecoq, Towards a metamaterial approach for fast timing in PET: experimental proof-of-concept. Phys. Med. Biol. 12 (2019). (EPb ahead of print)ADSCrossRefGoogle Scholar
  15. 15.
    P.A. Rodnyi, Physical Processes in Inorganic Scintillators (CRC Press, Boca Raton, 1997)Google Scholar
  16. 16.
    M. Korzhik, Physics of Scintillation in Oxide Crystals (BSU Press, Minsk, 2003)Google Scholar
  17. 17.
    P. Lecoq, A. Annenkov, A. Gektin, M. Korzhik, C. Pedrini, Inorganic Scintillators for Detector Systems (Springer, Berlin, 2006)Google Scholar
  18. 18.
    P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detector Systems (Springer, Cham, 2016)Google Scholar
  19. 19.
    P. Rodnyi, P. Dorenbos, C.W.E. van Eijk, Energy loss in inorganic scintillators. Phys. Status Solidi B 187, 15–29 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    А. Lempicki, The physics of inorganic scintillators. J. Appl. Spectrosc. 62, 209–231 (1995)CrossRefGoogle Scholar
  21. 21.
    M. Korzhik, A. Gektin, Engineering of Scintillation Materials and Radiation Technologies (Springer, Cham, 2017)CrossRefGoogle Scholar
  22. 22.
    A. Lushchik, M. Kirm, C. Lushchik, Multiplication of anion and cation electronic excitations in luminescent wide-gap ionic crystals. Radiat. Meas. 24, 365–369 (1995); A. Vasil’ev, V. Kolobanov, I. Kuusmann, Ch. Lushchik, Multiplication of electron excitations in MgO crystals. Sov. Phys. Solid State 27, 1616–1619 (1985)Google Scholar
  23. 23.
    J. H. Hubber, Photon cross sections attenuation coefficients and energy absorption coefficients from 10keV to 100GeV, NSRDS-NBS29, S Department of Commerce, National Bureau of Standards (1969)Google Scholar
  24. 24.
    M. J. Berger, S. M. Seltzer, Tables of energy losses and ranges of electrons and positrons in: studies in penetration of charged particles in matter (Publication of NAS-NRC, 1964)Google Scholar
  25. 25.
    R. Kirkin, V. Mikhailin, A. Vasil’ev, Recombination of correlated electron-hole pairs with account of hot capture with emission of optical phonons. IEEE Trans. Nucl. Sci. 59, 2057–2064 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    C. Leroy, P.G. Rancoita, Principles of Radiation Interaction in Matter and Detection (Word Scientific Publishing Co Pte Ltd, Singapore, 2016)CrossRefGoogle Scholar
  27. 27.
    A. Barysevich et al., Radiation damage of heavy crystalline detector materials by 24 GeV protons. Nucl. Instrum. Methods Phys. Res. A 701, 231–234 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    E. Lamb Wellis Jr., Passage of uranium fission fragments through matter. Phys. Rev. 58, 696–702 (1940)ADSCrossRefGoogle Scholar
  29. 29.
    N. Bohr, On the theory of the decrease of velocity of moving electrified particles on passing through matter. Philos. Mag. 25, 10–31 (1913)CrossRefGoogle Scholar
  30. 30.
    H.A. Bethe, Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. 5, 325–400 (1930)CrossRefGoogle Scholar
  31. 31.
    F. Bloch, Bremsvermogen von Atomen mit mehreren Electronen. Z. Physic 81, 363–376 (1933)ADSzbMATHGoogle Scholar
  32. 32.
    G.F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, New York, 2000)Google Scholar
  33. 33.
    D. Mazed, S. Mameri, R. Ciolini, Design parameters and technology optimization of 3He-filled proportional counters for thermal neutron detection and spectrometry applications. Radiat. Meas. 47, 577–587 (2012)CrossRefGoogle Scholar
  34. 34.
    Evaluated Nuclear Data File (ENDF), Accessed Mar 2019
  35. 35.
    P. Reeder, Neutron detection using GSO scintillator. Nucl. Instrum. Methods. Phys. Res. Sect. A 340, 371–378 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    M. Korzhik, K.T. Brinkmann, G. Dosovitskiy, et al., Compact and effective detector of the fast neutrons on a base of Ce doped Gd3Al2Ga3O12 scintillation crystal. IEEE Trans. Nucl. Sci. 66, 536–540 (2019)ADSCrossRefGoogle Scholar
  37. 37.
    K. Hagiawara, et al., Prog. Theor. Exp. Phys. arXiv:1809.02664v1 [nucl-ex] (2015)Google Scholar
  38. 38.
    M. Korzhik, K.T. Brinkmann, G. Dosovitskiy, et al., Detection of neutrons in a wide energy range with crystalline Gd3Al2Ga3O12, Lu2SiO5 and LaBr3 doped with Ce scintillators. Nucl. Instrum. Methods Phys. Res. A 931, 88–91 (2019)ADSCrossRefGoogle Scholar
  39. 39.
    H. Klein, F.D. Brooks, Scintillation Detectors for fast Neutrons, Proceedings of Science (FNDA, 2006), p. 097.
  40. 40.
    A. Alireza et al, Observation of reactor antineutrinos with a rapidly-deployable surface-level detector, arXiv18.1202163v1 (2018)Google Scholar
  41. 41.
    C.E.R.N. The, Large Hadron Collider: Accelerator and Experiments, vol 1–2 (CERN, Geneva, 2009)Google Scholar
  42. 42.
    CMS Collaboration, Observation of a new bozon at a mass of 125 GeV with the CMS experiment, at the LHC. Phys. Lett. B 716, 30–61 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    A. Annenkov, M. Korzhik, P. Lecoq, Lead tungstate scintillation material. Nucl. Instrum. Meth. Phys. Res. Sect. A 490, 30–50 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    G. von Dardel et al., Mean life of the neutral. Phys. Lett. 4, 51–54 (1963)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Shao, A new timing model for calculating the intrinsic timing resolution of a scintillator detector. Phys. Med. Biol. 52, 1103–1117 (2007)CrossRefGoogle Scholar
  46. 46.
    A. Auffray, G. Dosovitskiy, A. Fedorov, et al., Irradiation effects on Gd3Al2Ga3O12 scintillators prospective for application in harsh irradiation environments. Radiat. Phys. Chem. 164, 108365 (2019)CrossRefGoogle Scholar
  47. 47.
    Technical Proposal for a MIP Timing Detector in the CMS experiment Phase 2 upgrade, Tech. Rep. CERN-LHCC-2017-027. LHCC-P-009, (CERN, Geneva Dec 2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Research Institute for Nuclear ProblemsBelarusian State UniversityMinskBelarus
  2. 2.Semiconductor Physics DepartmentVilnius UniversityVilniusLithuania
  3. 3.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations