Advertisement

Greenhouse Effect in Atmospheres of Earth and Venus

  • Vladimir KrainovEmail author
  • Boris M. Smirnov
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 108)

Abstract

The greenhouse phenomenon in the atmosphere that results from emission of its molecules and particles in the infrared spectrum range is determined by atmospheric water in the form of molecules and microdrops and by carbon dioxide molecules for the Earth atmosphere and by carbon dioxide molecules and dust for the Venus atmosphere. The line-by-line method used the frequency dependent radiative temperature for atmospheric air with a large optical thickness in the infrared spectral range, allows one to separate emission of various components in atmospheric emission. This method demonstrates that the removal of carbon dioxide from the Earth’s atmosphere leads to a decrease of the average temperature of the Earth’s surface by 4 K; however, doubling of the carbon dioxide amount causes an increase of the Earth’s temperature by 0.4 K from the total 2 K at \(\mathrm{CO}_2\) doubling in the real atmosphere, as it follows from the NASA measurements. The contribution to this temperature change due to injections of carbon dioxide in the atmosphere due to combustion of fossil fuel, and it is 0.02 K. The infrared radiative flux to the Venus surface due to \(\mathrm{CO}_2\) is about 30% of the total flux, and the other part is determined by a dust.

References

  1. 1.
    J.B.J. Fourier, Annal. Chem. Phys. 27, 136 (1824)Google Scholar
  2. 2.
    J.B.J. Fourier, Mem. Acad. Roy. Sci. 7, 569 (1827)Google Scholar
  3. 3.
  4. 4.
    J. Tyndall, Proc. Roy. Inst. 3, 155 (1959)Google Scholar
  5. 5.
    J. Tyndall, Philos. Mag. 22, 169–273(1861)Google Scholar
  6. 6.
    J. Tyndall, Philos. Mag. 26, 44 (1863)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Y.G. Houghton, Physical Meteorology (MIT Press, Cambridge, 1985)Google Scholar
  9. 9.
    S. Twomey, Atmos. Environ. 25A, 2435 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    B.M. Smirnov, Introduction to Plasma Physics (Moscow, Nauka, 1975; in Russian)Google Scholar
  11. 11.
    B.M. Smirnov, Introduction to Plasma Physics (Mir, Moscow, 1977)Google Scholar
  12. 12.
    B.M. Smirnov, Physics of Weakly Ionized Gas (Moscow, Nauka 1979; in Russian)Google Scholar
  13. 13.
    B.M. Smirnov, Physics of Weakly Lonized Gases (Mir, Moscow, 1980)Google Scholar
  14. 14.
    Understanding Climate Change (Washington, National Academy of Sciences, 1975)Google Scholar
  15. 15.
    J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics (Wiley, Hoboken, 2006)Google Scholar
  16. 16.
    M.L. Salby, Physics of the Atmosphere and Climate (Cambridge University Press, Cambridge, 2012)Google Scholar
  17. 17.
    H.N. Pollack, S.J. Hunter, R. Johnson, Rev. Geophys. 30, 267 (1997)Google Scholar
  18. 18.
    O. Boucher, Atmospheric Aerosols. Properties and Climate Impacts (Dordrecht, Springer, 2015)Google Scholar
  19. 19.
    B.M. Smirnov, Microphysics of Atmospheric Phenomena (Springer, Switzerland, 2017)CrossRefGoogle Scholar
  20. 20.
    G.R. North, K.-Y. Kim, Energy Balance Climate Models (Weinheim, Wiley, 2017)Google Scholar
  21. 21.
    J.T. Kiehl, K.E. Trenberth, Bull. Am. Meteorol. Soc. 78, 197 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    K.E. Trenberth, J.T. Fasullo, J.T. Kiehl, Bull. Am. Meteorol. Soc. 90, 311 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    K.E. Trenberth, J.T. Fasullo, Surf. Geophys. 33, 413 (2012)ADSCrossRefGoogle Scholar
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    M. Wendisch, P. Yang, Theory of Atmospheric Radiative Transfer (Wiley, Singapore, 2012)Google Scholar
  28. 28.
    U.S. Standard Atmosphere (U.S. Government Printing Office, Washington, 1976)Google Scholar
  29. 29.
    B.M. Smirnov, EPL 114, 24005 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    J.E. Hansen, D. Johnson, A. Lacis et al., Science 213, 957 (1981)ADSCrossRefGoogle Scholar
  31. 31.
    J.E. Hansen, R. Ruedy, M. Sato, K. Lo, https://www.data.giss.nasa.gov/gstemp/2011
  32. 32.
  33. 33.
  34. 34.
    J.E. Hansen, R. Ruedy, J. Glascoe, M. Sato, J. Geophys. Res. 104, 997 (1997)Google Scholar
  35. 35.
    J.E. Hansen, R. Ruedy, M. Sato et al., J. Geophys. Res. 106, 947 (2001)Google Scholar
  36. 36.
    J.E. Hansen, R. Ruedy, M. Sato, K. Lo, Rev. Geophys. 48, RG4004 (2010)Google Scholar
  37. 37.
    B.M. Smirnov, Physics of Global Atmosphere (Dolgoprudny, Intellect, 2017; in Russian)Google Scholar
  38. 38.
    T. Pedersen, Y. Rosental, S. Seitzinger et al., Science 290, 291 (2000)Google Scholar
  39. 39.
    T.M. Wigley, D.S. Schimmel, The Carbon Cycle (Cambridge, Cambridge University Press, 2000)Google Scholar
  40. 40.
    D. Archer, The Global Carbon Cycle (Princeton University, Press, Princeton, 2010)Google Scholar
  41. 41.
  42. 42.
  43. 43.
  44. 44.
    Ch.D. Keeling et al., Tellus 12, 200 (1960)ADSCrossRefGoogle Scholar
  45. 45.
    Ch.D. Keeling et al., Tellus 28, 538 (1976)Google Scholar
  46. 46.
  47. 47.
    S. Arrhenius, Phil. Mag. 41, 237 (1896)CrossRefGoogle Scholar
  48. 48.
  49. 49.
  50. 50.
    I.A. Shiklomanov, Water in Crisis: A Guide to the World’s Fresh Water Resources In: P.H. Gleick (Eds.) (Oxford, Oxford University Press, 1993; p. 13–24)Google Scholar
  51. 51.
    I.A. Shiklomanov, J.C. Rodda (eds.), World Water Resources at the Beginning of the Twenty-First Century (Cambridge University Press, Cambridge, 2003)Google Scholar
  52. 52.
    R.W.Healy, T.C. Winter, J.W. Labaugh, O.L. Franke, Water Budgets: Foundations for Effective Water-Resources and Environmental Management (Reston, Virginia, U.S. Geological Survey Circular 1308, 2007)Google Scholar
  53. 53.
  54. 54.
    S. Bashkin, J. Stoner, Atomic Energy Levels and Grotrian Diagrams, Vol. 1–4 (Amsterdam, North Holland, 1975–1982)Google Scholar
  55. 55.
    J.P. Peixoto, A.H. Oort, Physics of Climate (Washington, Amer. Inst. Phys., 1992)Google Scholar
  56. 56.
    K.E. Trenberth, L. Smith, T. Qian et al., J. Hydrometeorol. 8, 758 (2007)ADSCrossRefGoogle Scholar
  57. 57.
  58. 58.
  59. 59.
  60. 60.
  61. 61.
  62. 62.
  63. 63.
  64. 64.
  65. 65.
    D.R. Lide, Handbook of Chemistry and Physics, Edn. 86 (CRC Press, London, 2003–2004)Google Scholar
  66. 66.
    A. Dai, J. Climate 19, 3589 (2006)ADSCrossRefGoogle Scholar
  67. 67.
    K.M. Willett, P.D. Jones, N.P. Gillett, P.W. Thorne, J. Climate 21, 5364 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    D.I. Berry, E.C. Kent, Bul. Amer. Meteorol. Soc. 90, 645 (2009)Google Scholar
  69. 69.
  70. 70.
    R.M. Goody, Atmospheric radiation. Theoretical Basis (Oxford, Oxford University Press, 1964)Google Scholar
  71. 71.
    F. Reif, Statistical and Thermal Physics (McGrow Hill, Boston, 1965)Google Scholar
  72. 72.
    L.D. Landau, E.M. Lifshitz, Statistical Physics, vol. 1 (Pergamon Press, Oxford, 1980)zbMATHGoogle Scholar
  73. 73.
    R.M. Goody, Y.L. Yung, Atmospheric Radiation (Oxford University Press, New York, 1995)Google Scholar
  74. 74.
    B.M. Smirnov, JETP 126, 446 (2018) §3Google Scholar
  75. 75.
    W.M. Haynes, CRC Handbook of Chemistry and Physics, Edn. 97 (London, CRC Press, 2016–2017)Google Scholar
  76. 76.
  77. 77.
    C.M.R. Platt, Quart. J. Roy. Meteorolog. Soc. 102, 553 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984)Google Scholar
  79. 79.
  80. 80.
    Paleosens Project Members, Nature 491, 683 (2012)ADSCrossRefGoogle Scholar
  81. 81.
    L. Pauling, General Chemistry (Freeman, San Francisco, 1970)Google Scholar
  82. 82.
    J.M. Kauffman, J. Sci. Explor. 4, 723 (2007)Google Scholar
  83. 83.
  84. 84.
    T.M. Cronin, Paleoclimates: Understanding Climate Change Past and Present (Columbia University Press, New York, 2010)Google Scholar
  85. 85.
    M.L. Bender, Paleoclimate (Princeton University Press, Princeton, 2013)CrossRefGoogle Scholar
  86. 86.
    I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan et al., J. Quant. Spectr. Rad. Transf. 203, 3–69(2017)Google Scholar
  87. 87.
    W.M. Elsasser, Phys. Rev. 54, 126 (1938)ADSCrossRefGoogle Scholar
  88. 88.
    L.S. Rothhman, W.S. Benedict, Appl. Opt. 17, 2605 (1978)ADSCrossRefGoogle Scholar
  89. 89.
  90. 90.
  91. 91.
    V.I. Moroz et al., Adv. Space Res. 5, 197 (1985)Google Scholar
  92. 92.
    M.G. Tomasko et al., J. Geophys. Res. 85, 8187 (1980)Google Scholar
  93. 93.
  94. 94.
    J.T. Schofield, F.W. Taylor, Icarus 52, 245 (1982)ADSCrossRefGoogle Scholar
  95. 95.
    L.V. Zasova et al., Planet Space Sci. 55, 1712 (2007)Google Scholar
  96. 96.
    G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, Princeton, 1945)Google Scholar
  97. 97.
    M.A. El’yashevich, Molecular Spectroscopy (Fizmatgiz, Moscow, 1963; in Russian)Google Scholar
  98. 98.
    H.C. Allen, P.C. Cross, Molecular Vib-rotors; the Theory and Interpretation of High Resolution Infra-red Spectra (Wiley, New York, 1963)zbMATHGoogle Scholar
  99. 99.
    G. Herzberg, Molecular Spectra and Molecular Structure: Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, New York, 1966)Google Scholar
  100. 100.
    C.N. Banwell, E.M. McCash, Fundamentals of Molecular Spectroscopy (McGraw-Hill, London, 1994)Google Scholar
  101. 101.
  102. 102.
    B.M. Smirnov, JETP 127, 48 (2018) §5Google Scholar
  103. 103.
    B.M. Smirnov, Physics of Ionized Gases (Wiley, New York, 2001)CrossRefGoogle Scholar
  104. 104.
  105. 105.
    L.V. Zasova, V.I. Moroz, L.V. Esposito, C.Y. Na, Icarus 105, 92 (1993)ADSCrossRefGoogle Scholar
  106. 106.
    Y.J. Lee, D.V. Titov, S. Tellmann et al., Icarus 217, 599 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Moscow Institute of Physics and TechnologyDolgoprudny, MoscowRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesIzhorskaya, MoscowRussia

Personalised recommendations