Skip to main content

Investigating the 3D Local Myocytes Arrangement in the Human LV Mid-Wall with the Transverse Angle

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11504))

Abstract

Myolaminar Layer Arrangement plays an essential role in cardiac biomechanics. In this preliminary study, we investigate the local 3D arrangement of the myocytes inside the sheets (layers) in three LV human heart transparietal samples imaged by X-ray phase contrast micro-tomography. We extract the large cleavage planes (CPs) of the extracellular matrix, manually select the middle wall region within each sample and compute the skeleton surface (chamfer distance and nonwitness-points selection) of the layers containing the myocytes. We compute the transverse angles of the myocytes in windows (32 × 32 × 32 voxels i.e. 112 × 112 × 112 μm3) centered on the 3D skeleton surface. Our results show that the myocytes are organized (i) in two populations in a LV samples close to the base with an angular distribution alternatively changing from one layer to the next and (ii) in a continuous angular evolution in samples located close to the apex. We find a mean angular difference between the two populations of about 8° in the two LV posterior samples and about 13° in the LV anterior sample. It is too early to statistically confirm that values as “universal” therefore we currently pursue our analysis of other available human LV samples to assess those first results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber, K.T.: Cardiac interstitium in health and disease: the fibrillar collagen network. J. Am. Coll. Cardiol. 13, 1637–1652 (1989)

    Article  Google Scholar 

  2. LeGrice, I.J., Takayama, Y., Covell, J.W.: Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ. Res. 77, 182–193 (1995)

    Article  Google Scholar 

  3. Costa, K.D., Takayama, Y., McCulloch, A.D., Covell, J.W.: Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am. J. Physiol. 276, H595–H607 (1999)

    Google Scholar 

  4. Spotnitz, H.M., Spotnitz, W.D., Cottrell, T.S., Spiro, D., Sonnenblick, E.H.: Cellular basis for volume related wall thickness changes in the rat left ventricle. J. Mol. Cell Cardiol. 6, 317–331 (1974)

    Article  Google Scholar 

  5. Takayama, Y., Costa, K.D., Covell, J.W.: Contribution of laminar myofiber architecture to load-dependent changes in mechanics of LV myocardium. Am. J. Physiol. Circ. Physiol. 51, H1510 (2002)

    Article  Google Scholar 

  6. Harrington, K.B., et al.: Direct measurement of transmural laminar architecture in the anterolateral wall of the ovine left ventricle: new implications for wall thickening mechanics. Am. J. Physiol. Circ. Physiol. 288, H1324–H1330 (2005)

    Article  Google Scholar 

  7. Jouk, P.S., et al.: Analysis of the fiber architecture of the heart by quantitative polarized light microscopy. Accuracy, limitations and contribution to the study of the fiber architecture of the ventricles during fetal and neonatal life. Eur. J. Cardio-Thoracic Surg. 31, 916–922 (2007)

    Article  Google Scholar 

  8. LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. Circ. Physiol. 269, H571–H582 (1995)

    Article  Google Scholar 

  9. Rademakers, F.E., et al.: Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation 89, 1174–1182 (1994)

    Article  Google Scholar 

  10. Mirea, I., Wang, L., Varray, F., Zhu, Y.-M., Serrano, E.E.D., Magnin, I.E.: Statistical analysis of transmural laminar microarchitecture of the human left ventricle. In: 2016 IEEE 13th International Conference on Signal Processing (ICSP), pp. 53–56. IEEE (2016)

    Google Scholar 

  11. Kung, G.L., et al.: The presence of two local myocardial sheet populations confirmed by diffusion tensor MRI and histological validation. J. Magn. Reson. Imaging 34, 1080–1091 (2011)

    Article  Google Scholar 

  12. Gilbert, S.H., et al.: Visualization and quantification of whole rat heart laminar structure using high-spatial resolution contrast enhanced MRI. Am. J. Physiol. Circ. Physiol. 302, H287–H298 (2011)

    Article  Google Scholar 

  13. Ubbink, S., Bovendeerd, P., Delhaas, T., Arts, T., van de Vosse, F.: Left ventricular shear strain in model and experiment: the role of myofiber orientation. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds.) FIMH 2005. LNCS, vol. 3504, pp. 314–324. Springer, Heidelberg (2005). https://doi.org/10.1007/11494621_32

    Chapter  Google Scholar 

  14. Streeter Jr., D.D., Bassett, D.L.: An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole. Anat. Rec. 155(4), 503–511 (1966)

    Article  Google Scholar 

  15. Streeter Jr., D.D.: Gross morphology and fiber geometry of the heart. In: Berne, R.M. (ed.) Handbook of Physiology-The Cardiovascular System I. The Heart, vol. 1, chap. 4, pp. 61–112. American Physiology Society, Bethesda (1979)

    Google Scholar 

  16. Bovendeerd, P.H.M., Huyghe, J.M., Arts, T., Van Campen, D.H., Reneman, R.S.: Influence of endocardial-epicardial crossover of muscle fibers on left ventricular wall mechanics. J. Biomech. 27(7), 941–951 (1994)

    Article  Google Scholar 

  17. Varray, F., Mirea, I., Langer, M., Peyrin, F., Fanton, L., Magnin, I.E.: Extraction of the 3D local orientation of myocytes in human cardiac tissue using X-ray phase-contrast micro-tomography and multi-scale analysis. Med. Image Anal. 38, 117–132 (2017)

    Article  Google Scholar 

  18. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  19. Borgefors, G.: Distance transformations in arbitrary dimensions. Comput. Vis. Graph Image Process 27, 321–345 (1984)

    Article  Google Scholar 

  20. Pudney, C.: Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comput. Vis. Image Underst. 72(404–413), 0680 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Varray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Mirea, I., Varray, F., Liu, WY., Magnin, I.E. (2019). Investigating the 3D Local Myocytes Arrangement in the Human LV Mid-Wall with the Transverse Angle. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2019. Lecture Notes in Computer Science(), vol 11504. Springer, Cham. https://doi.org/10.1007/978-3-030-21949-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21949-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21948-2

  • Online ISBN: 978-3-030-21949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics