Parametric Study of Simulated Randomly Rough Surfaces Used in Contact Mechanics

  • Rafael SchouwenaarsEmail author
  • Miguel Ángel Ramírez
  • Carlos Gabriel Figueroa
  • Víctor Hugo Jacobo
  • Armando Ortiz Prado
Conference paper
Part of the Structural Integrity book series (STIN, volume 8)


The study and numerical simulation of randomly rough surfaces is a fundamental topic in contact mechanics. Existing theory permits calculating the distributions of values such as height, slopes and gradients based on the power spectrum of the surface. Determination of derived quantities like summit height or radius distribution tends to become mathematically intractable. An alternative approximation is then to simulate the random surfaces to obtain these distributions empirically. Here, a direct Monte-Carlo approach is presented in which distributions of summit heights and curvatures are obtained directly from the theoretical formulae. Results are compared to distributions calculated from simulated surfaces, over a wide range simulation parameters. The latter approach induces significant statistical dispersion as compared to the former. The summit radius distribution is narrower for the simulated surfaces than predicted by theory.


Random surface Roughness Fractal dimension Monte Carlo simulation Contact mechanics 



This work was sponsored by DGAPA grant IN114718. Technical support by G. Álvarez, I. Cueva and E. Ramos is acknowledged.


  1. 1.
    Whitehouse, D.J., Archard, J.F.: The properties of random surfaces of significance in their contact. Proc. Roy. Soc. A. 316, 97–121 (1970)CrossRefGoogle Scholar
  2. 2.
    Majumdar, A., Bhushan, B.: Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J. Tribol. 112, 205–216 (1990)CrossRefGoogle Scholar
  3. 3.
    Majumdar, A., Bhushan, B.: Fractal model of elastic-plastic contact between rough surfaces. J. Tribol. 113, 1–11 (1991)CrossRefGoogle Scholar
  4. 4.
    Whitehouse, D.J.: Fractal or fiction. Wear 249, 345–353 (2001)CrossRefGoogle Scholar
  5. 5.
    Borodich, F.M., Pepelyshev, A., Savencu, O.: Statistical approaches to description of rough engineering surfaces at nano and microscales. Tribol. Intern. 103, 197–207 (2016)CrossRefGoogle Scholar
  6. 6.
    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. Roy. Soc. A. 295, 300–319 (1966)CrossRefGoogle Scholar
  7. 7.
    Ciavarella, M., Delfine, V., Demelio, G.A.: “Re-vitalized” Greenwood and Williamson model of elastic contact between fractal surfaces. J. Mech. Phys. Sol. 54, 2569–2591 (2006)CrossRefGoogle Scholar
  8. 8.
    Greenwood, J.A.: A simplified elliptic model of rough surface contact. Wear 261, 191–200 (2006)CrossRefGoogle Scholar
  9. 9.
    Yang, J., Komvopoulos, K.: A mechanics approach to static friction of elastic–plastic fractal surfaces. J. Tribol. 127, 315–324 (2005)CrossRefGoogle Scholar
  10. 10.
    Yan, W., Komvopoulos, K.: Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 84, 3617–3624 (1998)CrossRefGoogle Scholar
  11. 11.
    Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69, 657–662 (2002)CrossRefGoogle Scholar
  12. 12.
    Afferrante, L., Carbone, G., Demelio, G.: Interacting and coalescing Hertzian asperities: a new multiasperity contact model. Wear 278, 28–33 (2012)CrossRefGoogle Scholar
  13. 13.
    Pohrt, R., Popov, V.L.: Normal contact stiffness of elastic solids with fractal rough surfaces. Phys. Rev. Lett. 108(10), 104301 (2012)CrossRefGoogle Scholar
  14. 14.
    Pohrt, R., Qiang, L.: Complete boundary element formulation for normal and tangential contact problems. Физичecкaя мeзoмexaникa 17(3) (2014)CrossRefGoogle Scholar
  15. 15.
    Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: A new efficient numerical method for contact mechanics of rough surfaces. Int. J. Solids Struct. 49(2), 338–343 (2012)CrossRefGoogle Scholar
  16. 16.
    Hyun, S., Pei, L., Molinari, J.F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70(2), 026117 (2004)CrossRefGoogle Scholar
  17. 17.
    Pei, L., Hyun, S., Molinari, J.F., Robbins, M.O.: Finite element modeling of elasto-plastic contact between rough surfaces. J. Mech. Phys. Solids 53(11), 2385–2409 (2005)CrossRefGoogle Scholar
  18. 18.
    Yastrebov, V.A., Anciaux, G., Molinari, J.F.: From infinitesimal to full contact between rough surfaces: evolution of the contact area. Int. J. Solids Struct. 52, 83–102 (2015)CrossRefGoogle Scholar
  19. 19.
    Müser, M.H., Dapp, W.B., Bugnicourt, R., Sainsot, P., Lesaffre, N., et al.: Meeting the contact-mechanics challenge. Tribol. Lett. 65(4), 118 (2017)CrossRefGoogle Scholar
  20. 20.
    Saupe, D.: Algorithms for random fractals. In: Peitgen, H.O., Saupe, D. (eds.) The Science of Fractal Images, pp. 71–136 [Barnsley, M.F., Devaney, L., Mandelbrot, B.B., Peitgen, H.O., Saupe, D., Voss, R.F. (eds.)]. Springer, New York (1988)Google Scholar
  21. 21.
    Longuet-Higgins, M.S.: The statistical analysis of a random, moving surface. Philos. Trans. Roy. Soc. A 249, 321–387 (1957)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Longuet-Higgins, M.S.: Statistical properties of an isotropic random surface. Philos. Trans. Roy. Soc. A 250, 157–174 (1957)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Nayak, P.R.: Random process model of rough surfaces. J. Lubr. Technol. 93, 398–407 (1971)CrossRefGoogle Scholar
  24. 24.
    Schouwenaars, R., Jacobo, V.H., Ortiz, A.: The effect of vertical scaling on the estimation of the fractal dimension of randomly rough surfaces. Appl. Surf. Sci. 425, 838–846 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Materiales y Manufactura, Facultad de Ingeniería, Edificio OUniversidad Nacional Autónoma de MéxicoCoyoacán, Mexico CityMexico
  2. 2.Departamento de Materiales y Manufactura, Facultad de IngenieríaUniversidad Nacional Autónoma de México, PIITApodacaMexico

Personalised recommendations