Advertisement

U–Pb Zircon Geochronology and Geochemistry of Some Plutonic Rocks from the Afif Terrane of Saudi Arabia, Arabian Shield: Implications for Crustal Evolution

  • Hesham M. HarbiEmail author
Chapter
Part of the Regional Geology Reviews book series (RGR)

Abstract

The study areas (Bulghah and Hamimuah) are located in the Afif terrane between the Halaban–Zarghat fault zone and Ar Rika fault zone. They consist of many gabbroic to granitic I-type intrusions emplaced into Neoproterozoic volcanosedimentary rocks and are intruded by Neoproterozoic A-type granites. The studied plutonic rocks are I-type magmatic rocks, calk-alkaline, metaluminous to slightly peraluminous (A/CNK > 1.2), formed in a volcanic arc setting. On a primitive mantle-normalized spider diagrams, almost all rocks show a significant Nb–Ta–Ti depletions relative to K and La, which is typical of magmatism from a subduction zone tectonic setting. Geochemical features of the mafic intrusion (gabbro and diorite) are comparable to those of the arc-metavolcanic calc-alkaline rocks of the Arabian Shield, which were produced by partial melting of plagioclase- or spinel-peridotite in the upper most mantle <80 km deep in an intra-oceanic island arc. This suggests that the mafic intrusive rocks of Bulghah and Humaymah represent the plutonic equivalents of the Arabian Shield arc metavolcanic calc-alkaline rocks. The compositional variations from granodiorite to monzogranite of Bulghah and Humaymah suggest various degree of fractional crystallization of feldspar, biotite and amphibole. Y/Nb with Th/Nb, Th/Ta and Ce/Pb relationships indicate that the granodiorite and monzogranite were generated by a mafic parental magma contaminated with crustal materials, and controlled by fractional crystallization. Zircon U–Pb dating indicates that the mafic intrusive rocks from Bulghah and Humaymah, Saudi Arabia were formed at ~670 Ma, whereas the granitoid I-type intrusions were formed between 661 ± 5 and 643 ± 4 Ma, confirming the importance of the 640–700 Ma crust forming event in Saudi Arabia.

Keywords

Arabian shield Geochemistry I-type granitoid Volcanic-arc granite U–Pb zircon dating 

Notes

Acknowledgements

The data presented in this chapter is part of a project funded by Deanship of Scientific Research at KAU (King Abdulaziz University), Project No. 1431/296/145. K.A. Ali is thanked for helpful discussions during the preparation of the text and interpretation the geochemical data. The authors gratefully acknowledge the logistical and other support that they received during the project from the mining and exploration geologists of the Saudi Arabian Mining Company (Ma’aden) in the Sukhaybarat and Bulghah mining camps. U/Pb analyses were undertaken at the SHRIMP facilities of the John de Laeter Centre, supported by a university-government consortium and the Australian Research Council. We thank University of Oslo, for help with the LA-ICPMS analyses.

References

  1. Agar RA (1985) Stratigraphy and paleogeography of the Siham group: direct evidence for a late Proterozoic continental microplate and active continental margin in the Saudi Arabian shield. J Geol Soc London 142:1205–1220CrossRefGoogle Scholar
  2. Agar RA (1986) The Bani Ghayy group; sedimentation and volcanism in ‘‘pullapart’’ grabens of the Najd strike-slip orogen, Saudi Arabian Shield. Precambrian Res 31:259–274CrossRefGoogle Scholar
  3. Agar RA (1988) Geologic map of the Zalm quadrangle, sheet 22 F, Kingdom of Saudi Arabia: Saudi Arabian Deputy Ministry for Mineral Resources Geologic Map Number GM 89, scale 1:250,000, 41 pGoogle Scholar
  4. Agar RA, Stacey JS, Whitehouse MJ (1992) Evolution of the southern Afif terrane—a geochronologic study. Saudi Arabian Deputy Ministry for Mineral Resource, Open File Report DGMR-OF-10-15, 41 pGoogle Scholar
  5. Ali KA, Andresen A, Stern RJ, Manton WI, Omar SA, Maurice AE (2012) U–Pb zircon and Sr-Nd–Hf isotopic evidence for a juvenile origin of the c 634 Ma El-Shalul Granite, Central Eastern Desert, Egypt. Geol Mag 149:783–797CrossRefGoogle Scholar
  6. Ali KA, Krӧner A, Hegner E, Wong J, Li S-Q, Gahlan HA, Abu El Ela AA (2015) U–Pb zircon geochronology and Hf–Nd isotopic systematics of Wadi Beitan granitoid gneisses, South Eastern Desert, Egypt. Gondwana Res 27:811–824CrossRefGoogle Scholar
  7. Ali KA, Stern RJ, Manton WI, Kimura J-I, Khamees HA (2009) Geochemistry, Nd isotopes and U–Pb SHRIMP dating of Neoproterozoic volcanic rocks from the Central Eastern Desert of Egypt: New Insights into the ~750 Ma Crust-Forming Event. Precambrian Res 171:1–22CrossRefGoogle Scholar
  8. Ali KA, Stern RJ, Manton WI, Kimura J-I, Whitehouse MJ, Mukherjee SK, Johnson PR, Griffin WR (2010) Geochemical, U–Pb zircon, and Nd isotope investigations of the Neoproterozoic Ghawjah Metavolcanic rocks, Northwestern Saudi Arabia. Lithos 120:379–393CrossRefGoogle Scholar
  9. Barbarin B (1996) Genesis of the two main types of peraluminous granitoids. Geology 24:295–298CrossRefGoogle Scholar
  10. Bea F, Pereira MG, Stroh A (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem Geol 117:291–312CrossRefGoogle Scholar
  11. Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kbar. J Petrol 32:365–401CrossRefGoogle Scholar
  12. Be’eri-Shlevin Y, Katzir Y, Whitehouse M (2009) Post-collisional tectono-magmatic evolution in the northern Arabian-Nubian Shield (ANS): time constraints from ionprobe U–Pb dating of zircon. J Geol Soc London 166:71–85CrossRefGoogle Scholar
  13. Best MG, Christiansen EH (2001) Igneous Petrology. Blackwell Science Inc. 458 ppGoogle Scholar
  14. Bonin B, Giret A (1990) Plutonic alkaline series: Daly gap and intermediate compositions for liquids filling up crustal magma chambers. Schweiz Mineral Petrogr Mitt 70:175–187Google Scholar
  15. Brown FB, Schmidt DL, Huffman AC (1989) Geology of the Arabian Peninsula: shield area of Western Saudi Arabia. US Geological Survey Professional Paper 560-A, 188 pGoogle Scholar
  16. Champion DC, Chappell BW (1992) Petrogenesis of felsic I-type granites: an example from northern Queensland. Trans R Soc Edinb Earth Sci 83:115–126Google Scholar
  17. Chappel BW (1999) Aluminum saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46:535–551CrossRefGoogle Scholar
  18. Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83:1–26Google Scholar
  19. Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499CrossRefGoogle Scholar
  20. Chappell BW, Bryant CJ, Wyborn D (2012) Peraluminous I-type granites. Lithos 153:142–153CrossRefGoogle Scholar
  21. Charoy B, Nornoha F (1991) The Argemella granite-porphyry (central Portugal): the subvolcanic expression of a high fluorine, rare-element pegmatite magma. In: Pagel M, Leroy JL (eds) Source, transport and deposition of metals. A.A. Balkema, Rotterdam, pp 741–744Google Scholar
  22. Clemens JD, Stevens G, Farina F (2011) The enigmatic sources of I-type granites: the peritectic connexion. Lithos 126:174–181CrossRefGoogle Scholar
  23. Collins WJ, Beams SD, White AJR, Chappell BW (1992) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Miner Petrol 80:189–200CrossRefGoogle Scholar
  24. Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high-resolution ion microprobe. J Geophys Res 89:B525–B534CrossRefGoogle Scholar
  25. Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of data for plutonic rocks, The interpretation of igneous rocks. Springer, Netherlands, pp 308–331CrossRefGoogle Scholar
  26. Creaser RA, Price RC, Wormald RJ (1991) A-type granites revisited: assessment of a residual source model. Geology 19:163–166CrossRefGoogle Scholar
  27. Delfour J (1977) Geological map of the Nuqrah quadrangle, 25E, Kingdom of Saudi Arabia. Saudi Arabian Dir. Gen. Miner. Resour. Geological Map GM 28, scale 1:250,000, 32 pGoogle Scholar
  28. Delfour J (1981) Geological map of the Al Hissu quadrangle sheet 24 E, Kingdom of Saudi Arabia. Saudi Arabian Dir. Gen. Miner. Resour. Geological Map GM 58, scale 1:250,000, 47 pGoogle Scholar
  29. de la Roche H, Leterrier J, Grandclaude P, Marchal M (1980) A classification of volcanic and plutonic rocks using R1R2 diagram and major-element analyses—its relationships with current nomenclature. Chem Geol 29:183–210CrossRefGoogle Scholar
  30. Dilek Y, Ahmed Z (2003) Proterozoic ophiolites of the Arabian Shield and their significance in Precambrian tectonics. Ophiolites Earth Hist Geol Soc Lond, Special Publications 218:685–701CrossRefGoogle Scholar
  31. Drummond MS, Defant MJ, Kepezhinskas PK (1996) Petrogenesis of slab derived trondhjemite-tonalite-dacite/adakite magmas. Trans R Soc Edinb Earth Sci 87:205–215Google Scholar
  32. Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134CrossRefGoogle Scholar
  33. Eby GN (1992) Chemical subdivision of the A-type granitoids; petrogenetic and tectonic implications. Geology 20:641–644CrossRefGoogle Scholar
  34. Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Inside the subduction Factory. Geophysical Monograph Series, vol 138. American Geophysical Union, Washington, pp 23–45CrossRefGoogle Scholar
  35. Eyal M, Litvinovsky B, Jahn B, Zanvilevich A, Katzir Y (2010) Origin and evolution of post-collisional magmatism: coeval Neoproterozoic calc-alkaline and alkaline suites of the Sinai Peninsula. Chem Geol 269:153–179CrossRefGoogle Scholar
  36. Frost CD, Frost BR (1997) Reduced rapakivi-type granites: the tholeiite connection. Geology 25:647–650CrossRefGoogle Scholar
  37. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A Geochemical classification for granitic rocks. J Petrol 42:2033–2048CrossRefGoogle Scholar
  38. Genna A, Nehlig P, Le Goff E, Gguerrot C, Shanti M (2002) Proterozoic tectonism of the Arabian Shield. Precambrian Res 117:21–40CrossRefGoogle Scholar
  39. Green TH (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust–mantle system. Chem Geol 120:347–359CrossRefGoogle Scholar
  40. Greiling RO, Abdeen MM, Dardir AA, El Akhal H, El Ramly MF, Kamal El Din GM, Osman AF, Rashwan AA, Rice AHN, Sadek MF (1994) A structural synthesis of the Proterozoic Arabian–Nubian Shield in Egypt. Geol Rundschau 83:484–501CrossRefGoogle Scholar
  41. Harbi HM, Ali KA, Eldougdoug AA, Al Jahdali NS (2016) 40Ar/39Ar and U–Pb zircon dating constraints along Bir Tawilah shear zone, central Saudi Arabia: implication for age of gold mineralization. Chem Erde 76:309–324CrossRefGoogle Scholar
  42. Harbi HM, Ali KA, McNaughton NJ, Andresen A (2018) U–Pb zircon and 40Ar/39Ar geochronology of sericite from hydrothermal alteration zones: new constraints for the timing of Ediacaran gold mineralisation in the Sukhaybarat area, western Afif terrane, Saudi Arabia. Miner Deposita 53:459–476CrossRefGoogle Scholar
  43. Hassanen M, El-Nisr S, Mohamed FH (1996) Geochemistry and petrogenesis of Pan-African granitoids at Gabal Igla Ahmar, Easter Desert, Egypt. J Afr Earth Sci 22:29–42CrossRefGoogle Scholar
  44. Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45CrossRefGoogle Scholar
  45. Huang HQ, Li XH, Li WX, Li ZX (2011) Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, Southern China. Geology 39:903–906CrossRefGoogle Scholar
  46. Huang X-L, Xu Y-G, Li X-H, Li W-X, Lan J-B, Zhang H-H, Liu Y-S, Wang Y-B, Li H-Y, Luo Z-Y, Yang Q-J (2008) Petrogenesis and tectonic implications of Neoproterozoic, highly fractionated A-type granites from Mianning, South China. Precambrian Res 165:190–204CrossRefGoogle Scholar
  47. Huang X-L, Yu Y, Li J, Tong L-X, Chen LL (2013) Geochronology and petrogenesis of the early Paleozoic I-type granite in the Taishan area, South China: middle-lower crustal melting during orogenic collapse. Lithos 117:268–284CrossRefGoogle Scholar
  48. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U–Pb zircon geochronology. Chem Geol 211:47–69CrossRefGoogle Scholar
  49. Jarrar G, Stern RJ, Saffarini G, Al-Zubi H (2003) Late- and post-orogenic Neoproterozoic intrusions of Jordan: implications for crustal growth in the northernmost segment of the East African Orogen. Precambrian Res 123:295–319CrossRefGoogle Scholar
  50. Jiang N, Liu Y, Zhou W, Yang J, Zhang S (2007) Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China Craton. Geochim Cosmochim Acta 71:2591–2608CrossRefGoogle Scholar
  51. Johnson PR (1998) Tectonic map of Saudi Arabia and adjacent areas. Saudi Arabian Deputy Ministry for Mineral Resource, Technical Report USGS-TR-98-3, scale 1:40,000,000Google Scholar
  52. Johnson PR (2003) Post-amalgamation basins of the NE Arabian shield and implications for Neoproterozoic III tectonism in the northern East African orogen. Precambr Res 123:321–338CrossRefGoogle Scholar
  53. Johnson PR, Andresen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Kusky T, Stern RJ (2011) Late Cryogenian–Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:167–232CrossRefGoogle Scholar
  54. Johnson PR, Kattan F (1999) The timing and kinematics of a suturing event in the northeastern part of the Arabian shield, Kingdom of Saudi Arabia: Saudi Arabian Deputy Ministry for Mineral Resources Open File Report USGS-OF-99-3, 29 pGoogle Scholar
  55. Johnson PR, Woldehaimanot B (2003) Development of the Arabian-Nubian Shield: Perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. In: Yoshida M, Dasgupta S, Windley B (eds) Proterozoic East Gondwana: supercontinent assembly and breakup. Geol Soc Lond, Special Publications 206:289–325Google Scholar
  56. Kelemen PB (1995) Genesis of high Mg # andesites and the continental crust. Contrib Miner Petrol 120:1–19CrossRefGoogle Scholar
  57. Kemp AIS, Hawkesworth CJ, Paterson BA, Kinny PD (2006) Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439:580–583CrossRefGoogle Scholar
  58. Kennedy AK, De Laeter JR (1994) The performance characteristics of the WA SHRIMP II ion microprobe. U.S. Geological Survey Circular 166:1107Google Scholar
  59. King PL, White AJR, Chappell BW, Allen CM (1997) Characterization and origin of aluminous A-type granites from Lachlan Fold Belt, Southeastern Australia. J Petrol 38:371–391CrossRefGoogle Scholar
  60. Kusky T, Matsah MI (2003) Neoproterozoic dextral faulting on the Najd Fault System, Saudi Arabia, preceded sinistral tectonics related to the closure of the Mozambique Ocean. J Geol Soc, Lond 206:327–361 (Special Publications)Google Scholar
  61. Lehmann B, Mahawat C (1989) Metallogeny of tin in central Thailand: a genetic concept. Geology 17:426–429CrossRefGoogle Scholar
  62. Liégeois JP, Black R (1987) Alkaline magmatism subsequent to collision in the Pan-African belt of the Adrar des Iforas (Mali). In: Fitton JG, Upton BJG (eds) Alkaline igneous rocks. Geol Soc Lond, Spec Publ 30:381–401Google Scholar
  63. Liégeois JP, Stern RJ (2010) Sr-Nd isotopes and the geochemistry of granite-gneiss complexes from the Meatiq and Hafafit domes, Eastern, Desert, Egypt: No evidence for pre-Neoproterozoic crust. J Afr Earth Sci 57:31–40CrossRefGoogle Scholar
  64. Ludwig KR (2001a) SQUID 1.02: a user’s manual. Berkeley Geochronology Center, Special Publication No 2, Berkeley, CA, p 19Google Scholar
  65. Ludwig KR (2001b) Users manual for Isoplot/Ex version 2.05. Berkeley Geochronology Center, Special Publication No 1a, Berkeley, CA, p 48Google Scholar
  66. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:636–643CrossRefGoogle Scholar
  67. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  68. Miller CF (1985) Are strongly peraluminous magmas derived from politic sedimentary sources? J Geol 93:673–689CrossRefGoogle Scholar
  69. Miller CF, Mittlefehlt DW (1984) Extreme fractionation in felsic magma chambers: a product of liquid-state diffusion or fractional crystallization? Earth Planet Sci Lett 68:151–158CrossRefGoogle Scholar
  70. Miller DM, Goldstein SL, Langmuir CH (1994) Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368:514–520CrossRefGoogle Scholar
  71. Moghazi A-KM, Ali KA, Wilde SA, Zhou Q, Andersen T, Andresen A, Abu El-Enen MM, Stern RJ (2012) Geochemistry, geochronology, and Sr–Nd isotopes of the Late Neoproterozoic Wadi Kid volcano-sedimentary rocks, Southern Sinai, Egypt. Lithos 154:147–165CrossRefGoogle Scholar
  72. Moghazi AM, Harbi HM, Ali KA (2011) Geochemistry of the Late Neoproterozoic Hadb adh Dayaheen ring complex, Central Arabian Shield: implications for the origin of rare-metal-bearing post-orogenic A-type granites. J Asian Earth Sci 42:1324–1340CrossRefGoogle Scholar
  73. Montero P, Bea F, Corretge LG, Floor P, Whitehouse MJ (2009) U–Pb ion microprobe dating and Sr–Nd isotope geology of the Galiñeiro Igneous Complex. A model for the peraluminous/peralkaline duality of the Cambro-Ordovician magmatism of Iberia. Lithos 107:227–238CrossRefGoogle Scholar
  74. Moreno JA, Molina JF, Montero P, Abu Anbar M, Scarrow JH, Cambeses A, Bea F (2014) Unraveling sources of A-type magmas in juvenile continental crust: constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt. Lithos 192–195:56–85CrossRefGoogle Scholar
  75. Moussa EMM, Stern RJ, Manton WI, Ali KA (2008) SHRIMP zircon dating and Sm/Nd isotopic investigations of Neoproterozoic granitoids, Eastern Desert, Egypt. Precamb Res 160:341–356CrossRefGoogle Scholar
  76. Mushkin A, Navon O, Halicz L, Hartmann G, Stein M (2003) The petrogenesis of A-type magmas from the Amram Massif, Southern Israel. J Petrol 44:815–832CrossRefGoogle Scholar
  77. Nehlig P, Genna A, Asirfane F (2002) A review of the Pan-African evolution of the Arabian Shield. GeoArabia 7:103–124Google Scholar
  78. Pallister JS, Stacey JS, Fischer LB, Premo WR (1988) Precambrian ophiolites of Arabia; geologic setting, U–Pb geochronology, Pb-isotope characteristics, and implications for continental accretion. Precambr Res 38:1–54CrossRefGoogle Scholar
  79. Patiño Douce AE (1997) Generation of metaluminous A-type granitoids by low-pressure melting of calc-alkaline granitoids. Geology 25:743–746CrossRefGoogle Scholar
  80. Pearce J (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites: orogenic andesites and related rocks. Wiley, pp 525–548Google Scholar
  81. Pearce J, Harris NB, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983CrossRefGoogle Scholar
  82. Roberts MP, Clemens JD (1993) Origin of high potassium, calc-alkaline, I-type granitoids. Geology 21:825–828CrossRefGoogle Scholar
  83. Robinson FA, Foden JD, Collins AS, Payne JL (2014) Arabian Shield magmatic cycles and their relationship with Gondwana assembly: Insights from zircon U–Pb and Hf isotopes. Earth Planet Sci Lett 408:207–225CrossRefGoogle Scholar
  84. Robinson FA, Foden JD, Collins AS (2015) Geochemical and isotopic constraints on island arc, synorogenic, post-orogenic and anorogenic granitoids in the Arabian Shield, Saudi Arabia. Lithos 220–223:97–115CrossRefGoogle Scholar
  85. Roobol MJ, Ramsay CR, Jackson NJ, Darbyshire DPF (1983) Late Proterozoic lavas of the Central Arabian Shield—evolution of an ancient volcanic arc system. J Geol Soc London 140:185–202CrossRefGoogle Scholar
  86. Rosa DRN, Finch AA, Andersen T, Inverno CMC (2009) U–Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian Pyrite Belt. Mineral Petrol 95:47–69CrossRefGoogle Scholar
  87. Rudnick R, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64Google Scholar
  88. Rudnick RL, Gao S, Ling W-L, Liu Y-S, McDonough WF (2004) Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos 77:609–637CrossRefGoogle Scholar
  89. Secchi FA, Brotzu P, Callegari E (1991) The Arburese igneous complex (SW Sardinia, Italy)—an example of dominant igneous fractionation leading to peraluminous cordierite-bearing leucogranites as residual melts. Chem Geol 92:213–249CrossRefGoogle Scholar
  90. Shervais JW (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118CrossRefGoogle Scholar
  91. Sisson TW (1994) Gornblende-melt trace-element partitioning measured by ion microprobe. Chem Geol 117:331–344CrossRefGoogle Scholar
  92. Skjerlie KP, Johnston AD (1992) Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: implication for the generation of A-type granites. Geology 20:263–266CrossRefGoogle Scholar
  93. Stacey JS, Agar RA (1985) U–Pb isotopic direct evidence for the accretion of a continental microplate in the Zalm region of the Saudi Arabian shield. J Geol Soc London 142:1189–1203CrossRefGoogle Scholar
  94. Stacey JS, Hedge CE (1984) Geochronologic and isotopic evidence for early Proterozoic crust in the eastern Arabian shield. Geology 12:310–313CrossRefGoogle Scholar
  95. Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Ann Rev Earth Planet Sci 22:319–351CrossRefGoogle Scholar
  96. Stern RJ, Johnson PR (2010) Continental lithosphere pf the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth-Sci Rev 101:29–67CrossRefGoogle Scholar
  97. Stoeser DB (1986) Distribution and tectonic setting of plutonic rocks of the Arabian Shield. J Afr Earth Sc 4:21–46Google Scholar
  98. Stoeser D, Camp E (1985) Pan-African microplate accretion of the Arabian Shield. Geol Soc Am Bull 96:817–826CrossRefGoogle Scholar
  99. Stoeser D, Frost C (2006) Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes. Chem Geol 226:163–188CrossRefGoogle Scholar
  100. Streckeisen A, Le Maitre RW (1979) A chemical approximation to the modal QAPF classification of the igneous rocks. N Jb Miner Abh 136:169–206Google Scholar
  101. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in Ocean Basins. Geological Society of London, Special Publications 42:313–345Google Scholar
  102. Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45:29–44CrossRefGoogle Scholar
  103. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publishers, Oxford, p 312Google Scholar
  104. Teixeira RJS, Neiva AMR, Gomes MEP, Corfu F, Cuesta A, Croudace IW (2012) The role of fractional crystallization in the genesis of early syn-D3, tin mineralized Variscan two-mica granites from the Carrazeda de Ansiães area, Northern Portugal. Lithos 153:177–191CrossRefGoogle Scholar
  105. Tiepolo M, Bottazzi P, Foley SF, Oberti R, Vannucci R, Zanetti A (2001) Fractionation of Nb and Ta from Zr and Hf at mantle depths: the role of titanian pargasite and kaersutite. J Petrol 42:221–232CrossRefGoogle Scholar
  106. Turner SP, Foden JD, Morrison RS (1992) Derivation of some Atype magmas by fractionation of basaltic magma: an example from the listvenites Ridge, South Australia. Lithos 28:151–179CrossRefGoogle Scholar
  107. Turpin L, Cuney M, Friedrich M, Bouchez JL, Aubertin M (1990) Metaigneous origin of Hercynian peraluminous granites in N.W. French Massif Central: implications for crustal history reconstructions. Contrib Miner Petrol 104:163–172CrossRefGoogle Scholar
  108. Wang L-X, Ma C-Q, Zhang C, Zhang J-Y, Marks MAW (2014) Genesis of leucogranite by prolonged fractional crystallization: a case study of the Mufushan complex, South China. Lithos 206–207:147–163CrossRefGoogle Scholar
  109. Wetherill GW (1956) Discordant uranium–lead ages I. Trans Am Geophys Union 37:320–326CrossRefGoogle Scholar
  110. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol 95:407–419CrossRefGoogle Scholar
  111. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23CrossRefGoogle Scholar
  112. Wilde SA, Youssef K (2000) Significance of SHRIMP U–Pb dating of the Imperial Porphyry and associated Dokhan Volcanics, Gebel Dokhan, North Eastern Desert, Egypt. J Afr Earth Sci 31:403–410CrossRefGoogle Scholar
  113. Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 115:369–383CrossRefGoogle Scholar
  114. Wormald RJ, Price RC (1988) Peralkaline granites near Temora, Southern New South Wales: tectonic and petrological implications. Aust J Earth Sci 35:209–221CrossRefGoogle Scholar
  115. Wu FY, Sun DY, Li H, Jahn BM, Wilde S (2002) A-type granites in northern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173CrossRefGoogle Scholar
  116. Xiong XL, Adam J, Green TH (2005) Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chem Geol 234:105–126Google Scholar
  117. Zhang Y, Yang J-H, Sun J-F, Zhang J-H, Chen J-Y, Li X-H (2015) Pterogenesis of Jurassic fractionated I-type granites in Southeast China: constraints from whole-rock geochemical and zircon U–Pb and Hf-O isotopes. J Asian Earth Sci 111:268–283CrossRefGoogle Scholar
  118. Zhang XH, Yuan LL, Xue FH, Zhang Y (2012) Contrasting Triassic ferroan granitoids from northwestern Liaoning, North China: magmatic monitor of Mesozoic decratonization and craton-orogen. Lithos 144–145:12–23CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mineral Resources and Rocks, Faculty of Earth SciencesKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations