The Southern Atlas Front in Tunisia: Regional-Scale Geometry and Structural Evolution

  • Mohamed GharbiEmail author
  • Amara Masrouhi
  • Olivier Bellier
  • Mohamed Ben Youssef
Part of the Regional Geology Reviews book series (RGR)


This chapter provides an overview of data-compilation, recently published, as well as newly collected data on the structure and evolution of Southern Atlas front in Tunisia. The Northern Chotts Range, one of most geologic features in southern Atlas, separates a dominantly deformed area of Gafsa to the north, from a relatively undeformed area of Chotts basin and Saharan platform to the south. The Cenozoic contractional period shapes a chain with mixed thick- and thin-skinned tectonic style, controlled by deep-seated basement faults with shallower décollement within the sedimentary cover. The present-day general “en echelon” fold distribution of the overall Northern Chotts Range, the age and the geometry of units, are likely the surface expression of the “en echelon” WNW- to- NW-trending faulting, which controls the fold’s emplacement and style. These systems usually exhibit a fault kinematics, with striation showing a multiphase history. During Mesozoic times, the extensional activity of WNW- to- NW-trending normal faults is associated with significant thickness and/or facies variations comprising abundant syntectonic sequences. The growth of major synsedimentary typical normal fault systems, which produce a general framework delivering tilted blocks basin geometry, displays well-developed half-graben fill and large rollover structures along the southern Atlas. The Northern Chotts Range is, therefore, considered as the results of the Mesozoic inherited faults reverse–reactivation. The Chotts basin was previously considered as a large anticline related to the Cenozoic compressional events to explain the gentle deep observed “antiform structure”. It was, therefore, marked as the far-foreland of the southern Tunisian Atlas. Like many other inverted margin, extensional inherited structures are still preserved in the southern Tunisian Atlas. The Chotts preserves Mesozoic extensional structures, of which the so-called Chotts anticline is defined in this study as large inherited rollover structure. The subsequent tertiary compressional front will be, therefore, repositioned in the Northern Chotts Range Front.


Tectonic inversion Sequential restoration Tethyan rifting Chotts basin Southern Atlas Tunisia 



This work was financially supported by the Tunisian Ministry of Higher Education and Scientific Research and a French Foreign Affair Ministry (Ministère des Affaires Etrangères) grant through French Embassy in Tunisia. We acknowledge the ETAP (Entreprise Tunisienne des Activitées Pétrolières) particularly Abdelhak Amri and Youssef Bouazizi are thanked for providing access to the seismic lines. This work is a contribution to the program of the French National Research Agency (ANR) through the A*MIDEX OT-Med project (nANR-11-LABX-0061) funded by the French Government «Investissements d’Avenir» (n ANR-11-IDEX-0001-02). Midland Valley is acknowledged for providing academic license of “Move2016” for structural modeling.


  1. Abbès C, Zargouni F (1986) Anatomie d’un couloir de décrochements: le couloir de Hadifa (Chaîne Nord des Chotts-Tunisie). In: Rev Sc de la Terre, vol 4. TunisieGoogle Scholar
  2. Abbès A, Tlig S (1991) Tectonique précoce et sédimentation de la série Crétacée dans le bassin des Chotts (Tunisie du sud). Géologie Méditerranéenne XVIII(3), 149–161CrossRefGoogle Scholar
  3. Abbès C, Abdeljaouad S, Ben Ouezdou H (1994) Carte Geologique d’El Hamma au 1/100.000, feuille n°74. Institut National de recherche Scientifique de Tunisie et Service Géologique Nationale d’Office Nationale de Mines, TunisieGoogle Scholar
  4. Abdallah H, Meister C (1997) The Cenomanian—Turonian boundary in the Gafsa-Chott area (southern part of Central Tunisia): biostratigraphy, paleoenvironments. Cretac Res 18:197–236CrossRefGoogle Scholar
  5. Abdallah H, Rat P (1987) Le rôle de la faille de Gafsa dans le jeu transgressif et régressif au Crétacé supérieur de la chaîne nord des Chotts (Tunisie). In: Saloman J (ed) Colloque: Transgressions et régressions au Crétacé (France et régions voisines), vol 11, 1985. Mémoires Géologiques de l’Université de Dijon, Dijon, pp 232–242Google Scholar
  6. Abdallah H, Memmi L, Damotte R, Rat P, Magniez JF (1995) Le Crétacésupérieur de la chaîne Nord des Chotts (Tunisie du centre-sud): biostratigraphie et comparaison avec les régions voisines. Cretac Res 16:487–538CrossRefGoogle Scholar
  7. Abdeljaouad S, Zargouni F (1981) Mise en évidence d’une tectonique intra crétacé dans le secteur de J. Zemlet El Beïda (chaîne des Chotts). In: Acte de 1er Congr. Nat. Sc. Terre, Tunis, t. I, p 285Google Scholar
  8. Ahmadi R, Mercier E, Ouali J (2013) Growth-strata geometry in fault-propagation folds: a case study from the Gafsa basin, southern Tunisian Atlas. Swiss J Geosci 106:91–107CrossRefGoogle Scholar
  9. Ahmadi R, Ouali J, Mercier E, Mansy JL, Van-Vliet Lanoe B, Launeau P, Rhekhiss F, Rafini S (2006) The geomorphologic imprints of hinge migration in the fault-related folds. A case study in Southern Tunisian Atlas. J Struct Geol 28:721–728CrossRefGoogle Scholar
  10. Beauchamp W, Allmendinger RW, Barazangi M, Demnati A, El Alji M, Dahmani M (1999) Inversion tectonics and the evolution of the High Atlas Mountains, Morocco, based on a geological-geophysical transect. Tectonics 18:163–184CrossRefGoogle Scholar
  11. Bédir M (1995) Mécanismes géodynamiques des bassins associés aux couloirs de coulissements de la marge atlasique de la Tunisie, séismo-stratigraphie, séismo-tectonique et implications pétrolières. (Thèse d’Etat), Université de Tunis-II, Tunis, Tunisie, 412 pGoogle Scholar
  12. Bédir M, Boukadi N, Tlig S, Ben Timzal F, Zitouni L, Alouani R, Slimane F, Bobier C, Zargouni F (2001) Subsurface Mesozoïc Basins in the Central Atlas of Tunisia, tectonics, sequence deposit distribution and hydrocarbon potential. AAPG Bull 85:885–907Google Scholar
  13. Ben Ismaïl MH (1982) Le Trias et le Jurassique inférieur et moyen évaporitiques de l’extrême Sud tunisien: étude de sondages profonds et de terrain, synthèses paléogéographiques, p 180. Unpublished thesis, 3éme cycle, Université Paris VIGoogle Scholar
  14. Ben Youssef M (1999) Stratigraphie génétique du Crétacé de Tunisie, Micropaléontologie, stratigraphie séquentielle et géodynamique des bassins de la marge sud et péri-téthysienne, p 420. D.Sc. Thesis. Univ. de Tunis IIGoogle Scholar
  15. Ben Youssef M, Peybernes B (1986) Données micropaléontologiques et biostratigraphiques nouvelles sur le Crétacée inférieur marin du Sud tunisien. J Afr Earth Sci 5:217–231Google Scholar
  16. Ben Youssef M, Biely A, Memmi L (1985) La Formation Orbata (Aptien) en Tunisie méridionale. In: Précisions biostratigraphiques nouvelles, no 51, pp 105–120Google Scholar
  17. Billi A, Faccenna C, Bellier O, Minelli L, Neri G, Piromallo C, Presti D, Scrocca D, Serpelloni E (2011) Recent tectonic reorganization of the Nubia–Eurasia convergent boundary heading for the closure of the western Mediterranean. Bull Soc Geol Fr 182:279–303CrossRefGoogle Scholar
  18. Boltenhagen C (1985) Paléogéographie du crétacé moyen de la Tunisie centrale. In: 1ercongr. Nat Sci Terre (Tunis 1981), pp 97–114Google Scholar
  19. Bouaziz S, Barrier E, Angelier J, Turki MM (1994) Paleostress in the Southern Tunisian platform. In: Roure F (ed) Peri-tethyan platforms. Technip Editions, France, pp 179–196Google Scholar
  20. Bouaziz S, Barrier E, Turki MM, Tricart P (1999) La tectonique permo-mésozoïque (anté-Vraconien) dans la marge sud téthysienne en Tunisie méridionale. Bull Soc Géol Fr 170:45–56Google Scholar
  21. Bouaziz S, Barrier E, Soussi MM, Turki MM, Zouari H (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 357:227–253CrossRefGoogle Scholar
  22. Boughdiri M, Cordey F, Sallouhi H, Maalaoui K, Masrouhi A, Soussi M (2007) Jurassic radiolarian-bearing series of Tunisia: biostratigraphy and significance to western Tethys correlations. Swiss J Geosci 100:431–441CrossRefGoogle Scholar
  23. Boukhalfa K, Li G, Ben Ali W, Soussi M (2015) Early Cretaceous spinicaudatans (“conchostracans”) from lacustrine strata of the Sidi Aïch Formation in the northern Chotts range, southern Tunisia: taxonomy, biostratigraphy and stratigraphic implication. Cretac Res 56:482–490CrossRefGoogle Scholar
  24. Bracène R, Frizon de Lamotte D (2002) Origin of intraplate deformation in the Atlas system of western and central Algeria: from Jurassic rifting to Cenozoic-Quaternary inversion. Tectonophysics 357:207–226CrossRefGoogle Scholar
  25. Burollet PF (1991) Structures and tectonics of Tunisia. Tectonophysics 195:359–369CrossRefGoogle Scholar
  26. Castany G (1954) Les grands traits structuraux de la Tunisie Bull. Soc Géol France 6:151–173Google Scholar
  27. Castelluccio A, Andreucci B, Zattin M, Ketcham RA, Jankowski L, Mazzoli S, Szaniawski R (2015) Coupling sequential restoration of balanced cross sections and low-temperature thermochronometry: the case study of the Western Carpathians. Lithosphere 7:367–378CrossRefGoogle Scholar
  28. Chihi L (1992) Seismotectonic study in Central and southern Tunisia. Tectonophysics 209:175–178CrossRefGoogle Scholar
  29. Creuzot G, Mercier E, Ouali J, Tricart P (1993) La tectogenèse atlasique en Tunisie centrale: Apport de la modélisation géométrique. Eclogae Geol Helv 86:609–627Google Scholar
  30. Damotte R (1990) Early Cretaceous ostracodes from Tethyan regions. Cretac Res 11:307–311CrossRefGoogle Scholar
  31. DeCelles PG, Giles KN (1996) Foreland basin systems. Basin Res 8:105–123CrossRefGoogle Scholar
  32. Dhaoui M, Gabtni H (2013) Fault pattern delineation and structural interpretation of the Gafsa trough (onshore central Tunisia) using gravity data. Arab J Geosci 6(5):1559–1568CrossRefGoogle Scholar
  33. Dlala M (1992) Seismotectonic study in northern Tunisia. Tectonophysics 209:171–174CrossRefGoogle Scholar
  34. El Amari EA, Gharbi M, Youssef MB, Masrouhi A (2016) The structural style of the Southern Atlassic foreland in Northern Chotts Range in Tunisia: field data from Bir Oum Ali Structure. Arab J Geosci 9:389CrossRefGoogle Scholar
  35. Ellouz N, Patriat M, Gaulier JM, Bouatmani R, Sabounji S (2003a) From rifting to Alpine inversion: Mesozoic and Cenozoic subsidence history of some Moroccan basins. Sediment Geol 156:185–212CrossRefGoogle Scholar
  36. Ellouz N, Patriat M, Dey Z, Gaulier JM, Ben KH (2003b) The Hammamet, Gabes and Chotts basins (Tunisia) a review of the subsidence history. Sediment Geol 156:241–262CrossRefGoogle Scholar
  37. Faccenna C, Piromallo C, Crespo-Blanc A, Jolivet L, Rossetti F (2004) Lateral slab deformation and the origin of the westernMediterranean arcs. Tectonics 23:TC1012CrossRefGoogle Scholar
  38. Fakraoui M (1990) Etude stratigraphique et structurale des chaînes de Chotts: Evolution géométrique et cinématique liée à l’accident Sud-Atlasique. Thèse 3ième cycleGoogle Scholar
  39. Fakraoui M, Rabiaa C, Abbès C, Zargouni F, Bensalem H (1991) Carte géologique de Bir Rakeb, au 1/100.000, feuille n°73. Service Géologique Nationale d’Office Nationale de Mines, TunisieGoogle Scholar
  40. Faure P, Peybernes B (1986) Biozonation par Ammonites et essai de corrélation des séries réduites liasiques de la “Dorsale Tunisienne”. Bull Soc Hist Nat Toulouse 22:4149Google Scholar
  41. Frizon de Lamotte D, Saint-Bezar B, Bracene R, Mercier E (2000) The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics 19:740–761CrossRefGoogle Scholar
  42. Frizon de Lamotte D, Raulin C, Mouchot N, Wrobel-Daveau JC, Blanpied C, Ringenbach JC (2011) The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: initial geometry and timing of the inversion processes. Tectonics 30:TC3002CrossRefGoogle Scholar
  43. Gharbi M (2013) Relationship between the southern Atlas foreland and the eastern margin of Tunisia (Chotts-Gulf of Gabes): Tectono-sedimentary, fault kinematics and balanced cross sections. Ph.D, Marseille UniversityGoogle Scholar
  44. Gabtni H, Jallouli C, Mickus KL, Bédir M (2011) Geodynamics of the Southern Tethyan Margin in Tunisia and Maghrebian domain: new constraints from integrated geophysical study. Arab J Geosci 6:271–286CrossRefGoogle Scholar
  45. Gharbi M, Masrouhi A, Espurt N, Bellier O, Amari EA, Ben Youssef M, Ghanmi M (2013) New tectono-sedimentary evidences for Aptian to Santonian extension of the Cretaceous rifting in the Northern Chotts range (Southern Tunisia). J Afr Earth Sci 79:58–73CrossRefGoogle Scholar
  46. Gharbi M, Bellier O, Masrouhi A, Espurt N (2014) Recent spatial and temporal changes in the stress regime along the southern Tunisian Atlas front and the Gulf of Gabes: new insights from fault kinematics analysis and seismic profiles. Tectonophysics 626:120–136CrossRefGoogle Scholar
  47. Gharbi M, Espurt N, Masrouhi A, Bellier O, Amari EA (2015) Style of Atlassic tectonic deformation and geodynamic evolution of the southern Tethyan margin, Tunisia. Mar Pet Geol 66:801–816CrossRefGoogle Scholar
  48. Guiraud R (1998) Mesozoic rifting and basin inversion along the northern African Tethyan margin: an overview. In: MacGregor DS, Moody RTJ, Clark-Lowes DD (eds) Petroleum geology of North Africa, vol 133. Geological Society, London, Special Publication, pp 217–229CrossRefGoogle Scholar
  49. Guiraud R, Bosworth W (1997) Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: synthesis and implications to plate-scale tectonics. Tectonophysics 282:39–82CrossRefGoogle Scholar
  50. Guiraud R, Bosworth W, Thierry J, Delplanque A (2005) Phanerozoic geological evolution of Northern and Central Africa: an overview. J Afr Earth Sci 43:83–143CrossRefGoogle Scholar
  51. Guiraud R, Maurin JC (1991) Le rifting en Afrique au Crétacé inférieur: synthèse structurale, mise en évidence de deux étapes dans la genèse des bassins, relations avec les ouvertures océaniques périafricaines. Bull Soc Géol Fr 162:811–823CrossRefGoogle Scholar
  52. Guiraud R, Maurin JC (1992) Early Cretaceous rifts of Western and Central Africa: an overview. Tectonophysics 213:153–168CrossRefGoogle Scholar
  53. Herkat M, Guiraud R (2006) The relationships between tectonics and sedimentation in the Late Cretaceous series of the Eastern Atlasic Domain (Algeria). J Afr Earth Sci 46:346–370CrossRefGoogle Scholar
  54. Hlaiem A (1999) Halokinisis and structural evolution of the major features in eastern and southern Tunisian Atlas. Tectonophysics 306:79–95CrossRefGoogle Scholar
  55. Hlaiem A, Biju-Duval B, Laatar E, Rolland V, M’Rabet A (1997) The Gafsa-Metlaoui foreland basin (Southern Tunisia): quantitative modeling of the burial and thermal histories. Implications on the petroleum exploration. J Pet Geol 20:403–426CrossRefGoogle Scholar
  56. Jaillard E, Bouillin JP, Ouali J, Dumont T, Latil JL, Chihaoui A (2017) Albian salt-tectonics in Central Tunisia: evidences for an Atlantic-type passive margin. J Afr Earth Sci 135:220–234CrossRefGoogle Scholar
  57. Kamoun F, Peybernes B, Ciszak R, Calzada S (2001) Triassic paleogeography of Tunisia. Paleogeogr Paleoclimatol Paleoecol 175:223–242CrossRefGoogle Scholar
  58. Khomsi S, Ben Jemia MG, Frizon de Lamotte D, Maherssi C, Echihi O, Mezni R (2009) An overview of the Late Cretaceous–Eocene positive inversions and Oligo–Miocene subsidence events in the foreland of the Tunisian Atlas: structural style and implications for the tectonic agenda of the Maghrebian Atlas system. Tectonophysics 475:38–58CrossRefGoogle Scholar
  59. Laaridhi-Ouazaa N (1994) Etude minéralogique et géochimique des épisodes magmatiques mésozoïques et miocènes de la Tunisie, p 466. Univ. Tunis II, Tunisia. Thèse Doc. EtatGoogle Scholar
  60. Laville E, Pique A, Amrhar M, Charroud M (2004) A restatement of the Mesozoic Atlasic rifting (Morocco). J Afr Earth Sci 38:145–153CrossRefGoogle Scholar
  61. Lazzez M, Ben Youssef M (2008) Relative sea level changes of the Lower Cretaceous deposits in the Chotts area of Southern Tunisia. Turk J Earth Sci 17:835–845Google Scholar
  62. Louhaïchi MA, Tlig S (1993) Tectonique synsédimentaire des séries post-Barrémiennes au Nord-Est de la chaîne Nord des Chotts (Tunisie méridionale). Géologie Méditerranéenne XX(1), 53–74CrossRefGoogle Scholar
  63. M’Rabet A (1987) Stratigraphie, sédimentation, et diagenèse carbonatée des séries du Crétacé inférieur de Tunisie centrale. Ann Mines Géol (Tunis) 18:412Google Scholar
  64. Marie J, Trouve P, Desforges G, Dufaure P (1984) Nouveaux éléments de paléogéographie du Crétacée de Tunisie. In: Notes Mém. Comp. Franc. Pétrol, vol 19Google Scholar
  65. Marmi R, Guiraud R (2006) End Cretaceous to recent polyphased compressive tectonics along the ‘‘Mole Constantinois’’ and foreland (NE Algeria). J Afr Earth Sci 45:123–136CrossRefGoogle Scholar
  66. Martinez C, Chikhaoui M, Truillet R, Ouali J, Creuzot G (1991) Le contexte géodynamique de la distension albo-aptienne en Tunisie septentrionale et centrale: structuration éocrétacée de l’Atlas tunisien. Eclogae Geol Helv 84:61–82Google Scholar
  67. Masrouhi A, Bellier O, Koyi H, Vila JM, Ghanmi M (2013) The evolution of Lansarine-Baouala salt canopy in North African Cretaceous passive margin in Tunisia. Geol Mag 150(5):835–861Google Scholar
  68. Masrouhi A, Bellier O, Koyi H (2014a) Geometry and structural evolution of Lorbeus diapir, northwestern Tunisia: polyphase diapirism of the North African inverted passive margin. Int J Earth Sci (Geol Rundsch) 103:881–900CrossRefGoogle Scholar
  69. Masrouhi A, Bellier O, Youssef MB, Koyi H (2014b) Submarine allochthonous salt sheets: gravity-driven deformation of North African Cretaceous passive margin in Tunisia e Bled Dogra case study and nearby salt structures. J Afr Earth Sci 97:125–142CrossRefGoogle Scholar
  70. Masrouhi A, Ghanmi M, Ben Slama M-M, Ben Youssef M, Vila J-M, Zargouni F (2008) New tectono-sedimentary evidence constraining the timing of the positive tectonic inversion and the Eocene Atlasic phase in northern Tunisia: implication for the North African paleo-margin evolution. C R Geosci 340:771–778CrossRefGoogle Scholar
  71. Masrouhi A, Koyi H (2012) Submarine ‘‘salt glacier’’ kinematics of Northern Tunisia, a case of Triassic salt mobility in North African Cretaceous passive margin. In: Alsop GI, Archer SG, Hartley A, Grant NT, Hodgkinson R (eds) J. Geol. R. Salt tectonics, sediments and prospectivity, vol 363. Geological Society, London, Special Publications, pp 579–593Google Scholar
  72. Mattoussi Kort H, Gasquet D, Ikenne M, Laridhi Ouazaa N (2009) Cretaceous crustal thinning in North Africa: Implications for magmatic and thermal events in the Eastern Tunisian margin and the Pelagic Sea. J Afr Earth Sci 55:257–264CrossRefGoogle Scholar
  73. Michard A, Chalouan A, Feinberg H, Goffé B, Montigny R (2002) How does the Alpine belt end between Spain and Morocco? Bull Soc Géol Fr 173:3–15CrossRefGoogle Scholar
  74. Morgan MA, Grocott J, Moody RTJ, (1998) The structural evolution of the Zaghouan-Ressas Structural Belt, northern Tunisia. In: MacGregor DS, Moody RTJ, Clark-Lowes DD (eds) Petroleum Geology of North Africa, vol 132. Special Publications of the Geological Society, London, Special Publication, pp 405–422CrossRefGoogle Scholar
  75. Naji Ch, Gharbi M, Amri Z, Masrouhi A, Bellier O (In press) Temporal and spatial changes of the submarine Cretaceous paleoslope in Northern Tunisia, inferred from slump folds analysis. In: Proceedings of the Geologists’ AssociationGoogle Scholar
  76. Outtani F, Addoum B, Mercier E, de Frizon Lamotte D, Andrieux J (1995) Geometry and kinematics of the south Atlas front, Algeria and Tunisia. Tectonophysics 249:233–248CrossRefGoogle Scholar
  77. Piqué A, Tricart P, Guiraud R, Laville E, Bouaziz S, Amrhar M, Ait Ouali R (2002) The Mesozoic–Cenozoic Atlas belt (North Africa): an overview. Geodin Acta 15:185–208Google Scholar
  78. Rabiaa MC (1985) Etude géologique de la région des Chotts (Sud tunisien) par télédétection spatiale, détection de la radioactivité naturelle et analyse hydrogéochimique. Thèse Sème cycle. Bordeaux, p 201Google Scholar
  79. Raulin C, Frizon de Lamotte D, Bouaziz S, Khomsi S, Mouchot N, Ruiz G, Guillocheau F (2011) Late Triassic–early Jurassic block tilting along E-W faults, in southern Tunisia: New interpretation of the Tebaga of Medenine. J Afr Earth Sci 61:94–104CrossRefGoogle Scholar
  80. Riley P, Gordon C, Simo JA, Tikoff B, Soussi M (2011) Structure of the Alima and associated anticlines in the foreland basin of the southern Atlas Mountains, Tunisia. Lithosphere 3(1):76–91CrossRefGoogle Scholar
  81. Roure F, Casero P, Addoum B (2012) Alpine inversion of the North African margin and delamination of its continental lithosphere. Tectonics 31:TC3006CrossRefGoogle Scholar
  82. Roure F, Colletta B (1996) Cenozoic inversion structures in the foreland of the Pyrenees and Alps. In: Ziegler PA (ed) Peri-TethysMemoir 2: structure and prospects of Alpine Basins and forelands. Memoirs of the National Museum of Natural History, vol 170, pp 173–209Google Scholar
  83. Said A, Dominique C, Baby P, Ouali J (2011a) Active oblique ramp faulting in the Southern Tunisian Atlas. Tectonophysics 499:178–189CrossRefGoogle Scholar
  84. Said A, Baby P, Dominique C, Ouali J (2011b) Structure, paleogeographic inheritance, and deformation history of the southern Atlas foreland fold and thrust belt of Tunisia. Tectonics 30:TC6004CrossRefGoogle Scholar
  85. Sekatni N, Fauré P, Alouani R, Zargouni F (2008) Le passage Lias–Dogger de la Dorsale de Tunisie septentrionale. Nouveaux apports biostratigraphiques. Âge Toarcien supérieur de la distension téthysienne C. R. Palevol. 7185–7194Google Scholar
  86. Serpelloni E, Vannucci G, Pondrelli S, Argnani A, Casula G, Anzidei M, Baldi P, Gasperini P (2007) Kinematics of the western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys J Int 169:1180–1200CrossRefGoogle Scholar
  87. Soua M (2016) Cretaceous oceanic anoxic events (OAEs) recorded in the northern margin of Africa as possible oil and gas shale potential in Tunisia: an overview. Int Geol Rev 58(3):277–320CrossRefGoogle Scholar
  88. Soua M, Echihi O, Herkat M, Zaghbib-Turki D, Smaoui J, Jemia HFB, Belghaji H (2009) Structural context of the paleogeography of the Cenomanian–Turonian anoxic event in the eastern Atlas basins of the Maghreb. C R Geosci 341(12):1029–1037CrossRefGoogle Scholar
  89. Souquet P, Peybernès B, Saadi J, BenYoussef M, Ghanmi M, Zarbout M, Chikhaoui M, Kamoun F (1997) Séquences et cycles d’ordre 2 en régime extensif et transtensif: exemple du Crétacé inférieur de l’Atlas tunisien. Bull Soc Geol Fr 168:373–386Google Scholar
  90. Soussi M (2002) Le Jurassique de la Tunisie atlasique : Stratigraphie, dynamique sédimentaire, Paléogéographie et intérêt pétrolier, vol 157. Documents des Laboratoires de Géologie de Lyon, p 363Google Scholar
  91. Soussi M, Niedźwiedzki G, Tałanda M, Drơżdż D, Sulej T, Boukhalfa K, Mermer J, Błażejowski B (2017) Middle Triassic (Anisian-Ladinian) Tejra red beds and Late Triassic (Carnian) carbonate sedimentary records of southern Tunisia, Saharan Platform: biostratigraphy, sedimentology and implication on regional stratigraphic correlations. Mar Pet Geol 79:222–256CrossRefGoogle Scholar
  92. Stampfli GM, Marcoux J, Baud A (1991) Tethyan margins in space and time. Palaeogeogr Palaeoclimatol Palaeoecol 87:373–410CrossRefGoogle Scholar
  93. Swezey CS (1996) Structural controls on Quaternary depocentres within the Chotts Trough region of southern Tunisia. J Afr Earth Sci 22:335–347CrossRefGoogle Scholar
  94. Tlig S (2015) The Upper Jurassic and Lower Cretaceous series of southern Tunisia and northwestern Libya revisited. J Afr Earth Sci 110:100–115CrossRefGoogle Scholar
  95. van Hinsbergen D, Vissers R, Spakman W (2014) Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 33(4):393–419CrossRefGoogle Scholar
  96. Vila JM (1980) La chaine alpine d’Algérie orientale et des couffins Algéro-tunisiens, Thèse Es-sciences, ParisGoogle Scholar
  97. Zargouni F (1984) Style et chronologie des déformations des structures de l’Atlas tunisien méridional. Evolution récente de l’accident Sud-atlasique. C R Acad Sci Paris 299:179–196Google Scholar
  98. Zargouni F (1985) Tectonique de l’Atlas méridional de Tunisie, évolution géométrique et cinématique des structures en zone de cisaillement. Univ. Louis Pasteur, Strasbourg-Paris. Thése d’EtatGoogle Scholar
  99. Zargouni F, Abbes C (1987) Zonation structurale de la Tunisie. In: Rev Sc De la terre, vol 6, pp 63–69. Tunisie, 1987Google Scholar
  100. Zargouni F, Ruhland M (1981) Style des déformations du quaternaire récent liée au coulissement de la faille de Gafsa et chronologie des phases tectoniques de l’Atlas méridional de Tunisie. C R Acad Sc Paris T 292:913–915Google Scholar
  101. Zargouni F, Termoliéres JC (1981) Déformations tectoniques postérieures au dépôt de la série du Segui (Plio-Villafranchien) dans l’Atlas méridional tunisien. In: Actes 1er Cong. Nation. Sci. Terre, TunisGoogle Scholar
  102. Zargouni F, Rabiaa MC, Abbés C (1985) Rôle des couloirs de cisaillement de Gafsa et de Négrine-Tozeur dans la structuration du faisceau des plis des Chotts, éléments de l’accident sud-atlasique. C R Acad Sci Paris 301(11):831–883Google Scholar
  103. Ziegler PA, Cloetingh S, van Wees JD (1995) Dynamics of intra-plate compressional deformation: the alpine foreland and other examples. Tectonophysics 252:7–59CrossRefGoogle Scholar
  104. Zouaghi T, Guellala R, Lazzez M, Bédir M, Ben Youssef M, Inoubli MH, Zargouni F (2011) The Chott Fold Belt of Southern Tunisia, North African Margin: structural pattern, tectono-sedimentary, and regional geodynamic implications. New frontiers in tectonic research—at the midst of plate convergence. Intech-Book, Vienna, Austria, pp 49–72. ISBN 978-953-307-594-5Google Scholar
  105. Zouari H, Turki MM, Delteil J (1990) Nouvelles données sur l’évolution tectonique de la chaîne de Gafsa. Bull Soc Géol Fr 8:621–628CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohamed Gharbi
    • 1
    Email author
  • Amara Masrouhi
    • 2
  • Olivier Bellier
    • 3
  • Mohamed Ben Youssef
    • 1
  1. 1.Water Research and Technologies CenterGeo-Resources Laboratory, Borj-CedriaSolimanTunisia
  2. 2.King Abdulaziz UniversityFaculty of Earth Sciences, Geo-exploration Techniques DepartmentJeddahSaudi Arabia
  3. 3.Aix Marseille Univ, CNRS, IRD, Coll France, CEREGEAix-en-ProvenceFrance

Personalised recommendations