Skip to main content

Multi-test Decision Trees for Gene Expression Data

  • Chapter
  • First Online:
  • 553 Accesses

Part of the book series: Studies in Big Data ((SBD,volume 59))

Abstract

Bioinformatics [1] is now one of the fastest growing and most promising interdisciplinary fields of science, providing the methods and software tools to get insights into information processing in living organisms. This field tries to apply well-established methods from various domains but also develop new algorithms that enable a better understanding of biological data. With the advent of high throughput technologies, it is possible to obtain huge amounts of genomic data in a relatively easy and cheap way. Among the many types of omics data, gene expression data are the most readily analyzed as expression profiles and are perceived as extremely useful in a precise diagnosis (e.g., cancer subtype differentiation) and personalized treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Ensemble methods use multiple learning algorithms (so-called committees of classifiers) to obtain better predictive performance, and decision trees are very popular component classifiers.

References

  1. Pevsner J (2015) Bioinformatics and functional genomics. John Wiley, Hoboken

    Google Scholar 

  2. Bellazzi R, Zupan B (2007) J Biomed Inform 40(6):787–802

    Article  Google Scholar 

  3. Grzes M, Kretowski M (2007) Biocybern Biomed Eng 27(3):29–42

    Google Scholar 

  4. Barros R, Basgalupp M, Freitas A, Carvalho A (2014) IEEE Trans Evol Comput 18(6):873–892

    Article  Google Scholar 

  5. Chen X, Ishwaran H (2012) Genomics 99(6):323–329

    Article  Google Scholar 

  6. Lu H, Yang L, Yan K, Xue Y, Gao Z (2017) Neurocomputing 228:270–276

    Article  Google Scholar 

  7. Lazzarini N, Bacardit J (2017) BMC Bioinform 18:322

    Article  Google Scholar 

  8. Nag K, Pal N (2016) IEEE Trans Cybern 46(2):499–510

    Article  Google Scholar 

  9. Czajkowski M, Kretowski M (2020) Expert Syst Appl (in review)

    Google Scholar 

  10. Czajkowski M, Kretowski M (2014) Inf Sci 288:153–173

    Article  Google Scholar 

  11. Yi G, Sze S, Thon M (2007) Bioinformatics 23(9):1053–1060

    Article  Google Scholar 

  12. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth and Brooks, Monterey

    MATH  Google Scholar 

  13. Guyon I, Elisseeff A (2003) J Mach Learn Res 3:1157–1182

    Google Scholar 

  14. Robnik-Sikonja M, Kononenko I (2003) Mach Learn 53(1–2):23–69

    Article  Google Scholar 

  15. Hira Z, Gillies D (2015) Adv Bioinform 2015:198363

    Article  Google Scholar 

  16. Frank E, Hall M, Witten I (2016) The WEKA workbench. Online appendix for “Data mining: practical machine learning tools and techniques”, 4th edn. Morgan Kaufmann, Burlington

    Google Scholar 

  17. de Souto M, Costa I, de Araujo D, Ludermir T, Schliep A (2008) BMC Bioinform 9:497

    Article  Google Scholar 

  18. Kotthoff L, Thornton C, Hoos H, Hutter F, Leyton-Brown K (2017) J Mach Learn Res 18(1):826–830

    Google Scholar 

  19. Alizadeh A et al (2000) Nature 403:503–511

    Article  Google Scholar 

  20. Benson D, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt K, Sayers E (2017) NuclC Acids Res 45(D1):37–42

    Article  Google Scholar 

  21. Wang C et al (2012) J Clin Neurosci 19(4):541–545

    Article  Google Scholar 

  22. Vigano E et al (2018) Blood 131(18):2036–2046

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Kretowski .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kretowski, M. (2019). Multi-test Decision Trees for Gene Expression Data. In: Evolutionary Decision Trees in Large-Scale Data Mining. Studies in Big Data, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-030-21851-5_7

Download citation

Publish with us

Policies and ethics