Abstract
This paper proposes a new class of multi-follower bilevel problems. In this class the followers may be nonlinear, do not share constraints or variables, and are at most weakly constrained. This allows the leader variables to be partitioned among the followers. The new class is formalised and compared with existing problems in the literature. We show that approaches currently in use for solving multi-follower problems are unsuitable for this class. Evolutionary algorithms can be used, but these are computationally intensive and do not scale up well. Instead we propose an analytics-based decomposition approach. Two example problems are solved using our approach and two evolutionary algorithms, and the decomposition approach produces much better and faster results as the problem size increases.
Keywords
- Bilevel
- Analytics
- Clustering
- Decomposition
This is a preview of subscription content, access via your institution.
Buying options


Notes
- 1.
These are a way of expressing if-else relationships among variables [8].
References
de Amorim, R., Fenner, T.: Weighting Features for Partition Around Medoids Using the Minkowski Metric, pp. 35–44. Springer, Heidelberg (2012)
Angelo, J., Barbosa, H.: Differential evolution to find Stackelberg-Nash equilibrium in bilevel problems with multiple followers. In: IEEE Congress on Evolutionary Computation, CEC 2015, Sendai, Japan, May 25–28, 2015, pp. 1675–1682 (2015)
Bard, J.: Convex two-level optimization. Math. Program. 40(1), 15–27 (1988)
Calvete, H., Galé, C.: Linear bilevel multi-follower programming with independent followers. J. Glob. Optim. 39(3), 409–417 (2007)
Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)
Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)
DeMiguel, V., Xu, H.: A stochastic multiple-leader Stackelberg model: analysis, computation, and application. Oper. Res. 57(5), 1220–1235 (2009)
IBM: User’s manual of IBM CPLEX optimizer for z/OS: what is an indicator constraint? (2017). https://ibmco/2ErnDyn
Islam, M., Singh, H., Ray, T.: A memetic algorithm for solving bilevel optimization problems with multiple followers. In: IEEE Congress on Evolutionary Computation, CEC 2016, Vancouver, BC, Canada, July 24–29, 2016, pp. 1901–1908 (2016)
Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. Wiley (2009)
Liu, B.: Stackelberg-Nash equilibrium for multilevel programming with multiple followers using genetic algorithms. Comput. Math. Appl. 36(7), 79–89 (1998)
Lu, J., Han, J., Hu, Y., Zhang, G.: Multilevel decision-making: a survey. Inf. Sci. 346–347(Supplement C), 463 – 487 (2016). https://doi.org/10.1016/j.ins.2016.01.084, http://www.sciencedirect.com/science/article/pii/S0020025516300202
Lu, J., Shi, C., Zhang, G.: On bilevel multi-follower decision making: general framework and solutions. Inf. Sci. 176(11), 1607–1627 (2006)
Lu, J., Shi, C., Zhang, G., Dillon, T.: Model and extended Kuhn-Tucker approach for bilevel multi-follower decision making in a referential-uncooperative situation. J. Glob. Optim. 38(4), 597–608 (2007)
Lu, J., Shi, C., Zhang, G., Ruan, D.: Multi-follower linear bilevel programming: model and Kuhn-Tucker approach. In: AC 2005, Proceedings of the IADIS International Conference on Applied Computing, Algarve, Portugal, February 22–25, 2005, vol. 2, pp. 81–88 (2005)
Lu, J., Shi, C., Zhang, G., Ruan, D.: An extended branch and bound algorithm for bilevel multi-follower decision making in a referential-uncooperative situation. Int. J. Inf. Technol. Decis. Mak. 6(2), 371–388 (2007)
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.: cluster: Cluster Analysis Basics and Extensions (2017). R package version 2.0.6—for new features, see the ‘Changelog’ file (in the package source)
Marsaglia, G.: Choosing a point from the surface of a sphere. Ann. Math. Statist. 43(2), 645–646 (1972). https://doi.org/10.1214/aoms/1177692644
Muller, M.: A note on a method for generating points uniformly on n-dimensional spheres. Commun. ACM 2(4), 19–20 (1959)
Prestwich, S., Fajemisin, A., Climent, L., O’Sullivan, B.: Solving a Hard Cutting Stock Problem by Machine Learning and Optimisation, pp. 335–347. Springer International Publishing, Cham (2015)
Ramos, M., Boix, M., Aussel, D., Montastruc, L., Domenech, S.: Water integration in eco-industrial parks using a multi-leader-follower approach. Comput. Chem. Eng. 87(Supplement C), 190–207 (2016).https://doi.org/10.1016/j.compchemeng.2016.01.005, http://www.sciencedirect.com/science/article/pii/S0098135416000089
Shi, C., Lu, J., Zhang, G., Zhou, H.: An extended Kuhn-Tucker approach for linear bilevel multifollower programming with partial shared variables among followers. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, Hawaii, USA, October 10–12, 2005, pp. 3350–3357 (2005)
Shi, C., Zhang, G., Lu, J.: The Kth-best approach for linear bilevel multi-follower programming. J. Glob. Optim. 33(4), 563–578 (2005)
Shi, C., Zhou, H., Lu, J., Zhang, G., Zhang, Z.: The Kth-best approach for linear bilevel multifollower programming with partial shared variables among followers. Appl. Math. Comput. 188(2), 1686–1698 (2007)
Sinha, A., Malo, P., Frantsev, A., Deb, K.: Finding optimal strategies in a multi-period multi-leader-follower Stackelberg game using an evolutionary algorithm. Comput. Oper. Res. 41, 374–385 (2014)
Wei, C.P., Lee, Y.H., Hsu, C.M.: Empirical comparison of fast clustering algorithms for large data sets. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, pp. 10-pp. IEEE (2000)
Zhang, G., Lu, J.: Fuzzy bilevel programming with multiple objectives and cooperative multiple followers. J. Glob. Optim. 47(3), 403–419 (2010)
Zhang, G., Shi, C., Lu, J.: An extended Kth-best approach for referential-uncooperative bilevel multi-follower decision making. Int. J. Comput. Intell. Syst. 1(3), 205–214 (2008)
Acknowledgement
This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Fajemisin, A., Climent, L., Prestwich, S.D. (2020). Analytics-Based Decomposition of a Class of Bilevel Problems. In: Le Thi, H., Le, H., Pham Dinh, T. (eds) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, vol 991. Springer, Cham. https://doi.org/10.1007/978-3-030-21803-4_62
Download citation
DOI: https://doi.org/10.1007/978-3-030-21803-4_62
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-21802-7
Online ISBN: 978-3-030-21803-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)