Skip to main content

Analytics-Based Decomposition of a Class of Bilevel Problems

  • 1387 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 991)

Abstract

This paper proposes a new class of multi-follower bilevel problems. In this class the followers may be nonlinear, do not share constraints or variables, and are at most weakly constrained. This allows the leader variables to be partitioned among the followers. The new class is formalised and compared with existing problems in the literature. We show that approaches currently in use for solving multi-follower problems are unsuitable for this class. Evolutionary algorithms can be used, but these are computationally intensive and do not scale up well. Instead we propose an analytics-based decomposition approach. Two example problems are solved using our approach and two evolutionary algorithms, and the decomposition approach produces much better and faster results as the problem size increases.

Keywords

  • Bilevel
  • Analytics
  • Clustering
  • Decomposition

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-21803-4_62
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-21803-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    These are a way of expressing if-else relationships among variables [8].

References

  1. de Amorim, R., Fenner, T.: Weighting Features for Partition Around Medoids Using the Minkowski Metric, pp. 35–44. Springer, Heidelberg (2012)

    Google Scholar 

  2. Angelo, J., Barbosa, H.: Differential evolution to find Stackelberg-Nash equilibrium in bilevel problems with multiple followers. In: IEEE Congress on Evolutionary Computation, CEC 2015, Sendai, Japan, May 25–28, 2015, pp. 1675–1682 (2015)

    Google Scholar 

  3. Bard, J.: Convex two-level optimization. Math. Program. 40(1), 15–27 (1988)

    Google Scholar 

  4. Calvete, H., Galé, C.: Linear bilevel multi-follower programming with independent followers. J. Glob. Optim. 39(3), 409–417 (2007)

    Google Scholar 

  5. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)

    Google Scholar 

  6. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)

    Google Scholar 

  7. DeMiguel, V., Xu, H.: A stochastic multiple-leader Stackelberg model: analysis, computation, and application. Oper. Res. 57(5), 1220–1235 (2009)

    Google Scholar 

  8. IBM: User’s manual of IBM CPLEX optimizer for z/OS: what is an indicator constraint? (2017). https://ibmco/2ErnDyn

    Google Scholar 

  9. Islam, M., Singh, H., Ray, T.: A memetic algorithm for solving bilevel optimization problems with multiple followers. In: IEEE Congress on Evolutionary Computation, CEC 2016, Vancouver, BC, Canada, July 24–29, 2016, pp. 1901–1908 (2016)

    Google Scholar 

  10. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. Wiley (2009)

    Google Scholar 

  11. Liu, B.: Stackelberg-Nash equilibrium for multilevel programming with multiple followers using genetic algorithms. Comput. Math. Appl. 36(7), 79–89 (1998)

    Google Scholar 

  12. Lu, J., Han, J., Hu, Y., Zhang, G.: Multilevel decision-making: a survey. Inf. Sci. 346–347(Supplement C), 463 – 487 (2016). https://doi.org/10.1016/j.ins.2016.01.084, http://www.sciencedirect.com/science/article/pii/S0020025516300202

  13. Lu, J., Shi, C., Zhang, G.: On bilevel multi-follower decision making: general framework and solutions. Inf. Sci. 176(11), 1607–1627 (2006)

    Google Scholar 

  14. Lu, J., Shi, C., Zhang, G., Dillon, T.: Model and extended Kuhn-Tucker approach for bilevel multi-follower decision making in a referential-uncooperative situation. J. Glob. Optim. 38(4), 597–608 (2007)

    Google Scholar 

  15. Lu, J., Shi, C., Zhang, G., Ruan, D.: Multi-follower linear bilevel programming: model and Kuhn-Tucker approach. In: AC 2005, Proceedings of the IADIS International Conference on Applied Computing, Algarve, Portugal, February 22–25, 2005, vol. 2, pp. 81–88 (2005)

    Google Scholar 

  16. Lu, J., Shi, C., Zhang, G., Ruan, D.: An extended branch and bound algorithm for bilevel multi-follower decision making in a referential-uncooperative situation. Int. J. Inf. Technol. Decis. Mak. 6(2), 371–388 (2007)

    Google Scholar 

  17. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.: cluster: Cluster Analysis Basics and Extensions (2017). R package version 2.0.6—for new features, see the ‘Changelog’ file (in the package source)

    Google Scholar 

  18. Marsaglia, G.: Choosing a point from the surface of a sphere. Ann. Math. Statist. 43(2), 645–646 (1972). https://doi.org/10.1214/aoms/1177692644

  19. Muller, M.: A note on a method for generating points uniformly on n-dimensional spheres. Commun. ACM 2(4), 19–20 (1959)

    Google Scholar 

  20. Prestwich, S., Fajemisin, A., Climent, L., O’Sullivan, B.: Solving a Hard Cutting Stock Problem by Machine Learning and Optimisation, pp. 335–347. Springer International Publishing, Cham (2015)

    Google Scholar 

  21. Ramos, M., Boix, M., Aussel, D., Montastruc, L., Domenech, S.: Water integration in eco-industrial parks using a multi-leader-follower approach. Comput. Chem. Eng. 87(Supplement C), 190–207 (2016).https://doi.org/10.1016/j.compchemeng.2016.01.005, http://www.sciencedirect.com/science/article/pii/S0098135416000089

  22. Shi, C., Lu, J., Zhang, G., Zhou, H.: An extended Kuhn-Tucker approach for linear bilevel multifollower programming with partial shared variables among followers. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, Hawaii, USA, October 10–12, 2005, pp. 3350–3357 (2005)

    Google Scholar 

  23. Shi, C., Zhang, G., Lu, J.: The Kth-best approach for linear bilevel multi-follower programming. J. Glob. Optim. 33(4), 563–578 (2005)

    Google Scholar 

  24. Shi, C., Zhou, H., Lu, J., Zhang, G., Zhang, Z.: The Kth-best approach for linear bilevel multifollower programming with partial shared variables among followers. Appl. Math. Comput. 188(2), 1686–1698 (2007)

    Google Scholar 

  25. Sinha, A., Malo, P., Frantsev, A., Deb, K.: Finding optimal strategies in a multi-period multi-leader-follower Stackelberg game using an evolutionary algorithm. Comput. Oper. Res. 41, 374–385 (2014)

    Google Scholar 

  26. Wei, C.P., Lee, Y.H., Hsu, C.M.: Empirical comparison of fast clustering algorithms for large data sets. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, pp. 10-pp. IEEE (2000)

    Google Scholar 

  27. Zhang, G., Lu, J.: Fuzzy bilevel programming with multiple objectives and cooperative multiple followers. J. Glob. Optim. 47(3), 403–419 (2010)

    Google Scholar 

  28. Zhang, G., Shi, C., Lu, J.: An extended Kth-best approach for referential-uncooperative bilevel multi-follower decision making. Int. J. Comput. Intell. Syst. 1(3), 205–214 (2008)

    Google Scholar 

Download references

Acknowledgement

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Prestwich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Fajemisin, A., Climent, L., Prestwich, S.D. (2020). Analytics-Based Decomposition of a Class of Bilevel Problems. In: Le Thi, H., Le, H., Pham Dinh, T. (eds) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, vol 991. Springer, Cham. https://doi.org/10.1007/978-3-030-21803-4_62

Download citation