Parallel DC Cutting Plane Algorithms for Mixed Binary Linear Program

  • Yi-Shuai NiuEmail author
  • Yu You
  • Wen-Zhuo Liu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)


In this paper, we propose a new approach based on DC (Difference of Convex) programming, DC cutting plane and DCA (DC Algorithm) for globally solving mixed binary linear program (MBLP). Using exact penalty technique, we can reformulate MBLP as a standard DC program which can be solved by DCA. We establish the DC cutting plane (DC cut) to eliminate local optimal solutions of MBLP provided by DCA. Combining DC cut with classical cutting planes such as lift-and-project and Gomory’s cut, we establish a DC cutting plane algorithm (DC-CUT algorithm) for globally solving MBLP. A parallel DC-CUT algorithm is also developed for taking the power of multiple CPU/GPU to get better performance in computation. Preliminary numerical results show the efficiency of our methods.


DC programming DCA Mixed binary linear program DC cut Parallel DC-CUT algorithm 


  1. 1.
    Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 295–324 (1993)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Math. Program. 112(1), 3–44 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gurobi 8.1.0.
  4. 4.
    Le Thi, H.A., Pham, D.T., Le Dung, M.: Exact penalty in dc programming. Vietnam J. Math. 27(2), 169–178 (1999)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Le Thi, H.A., Pham, D.T.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Le Thi, H.A., Nguyen, Q.T., Nguyen, H.T., Pham, D.T.: Solving the earliness tardiness scheduling problem by DC programming and DCA. Math. Balk. 23(3–4), 271–288 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Le Thi, H.A., Moeini, M., Pham, D.T.: Portfolio selection under downside risk measures and cardinality constraints based on DC programming and DCA. Comput. Manag. Sci. 6(4), 459–475 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Le Thi, H.A., Pham, D.T., Huynh, V.N.: Exact penalty and error bounds in dc programming. J. Glob. Optim. 52(3), 509–535 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Le Thi, H.A., Pham, D.T.: DC programming and DCA: thirty years of developments. Math. Program. 169(1), 5–68 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ndiaye, B.M., Le Thi, H.A., Pham, D.T., Niu, Y.S.: DC programming and DCA for large-scale two-dimensional packing problems. In: Pan, J.S., Chen, S.M., Nguyen, N.T. (eds.) Intelligent Information and Database Systems, LNCS, vol. 7197, pp. 321–330, Springer, Berlin (2012). Scholar
  11. 11.
    Nguyen, V.V.: Méthodes exactes pour l’optimisation DC polyédrale en variables mixtes 0-1 basées sur DCA et des nouvelles coupes. Ph.D. thesis, INSA de Rouen (2006)Google Scholar
  12. 12.
    Nguyen, Q.T.: Approches locales et globales basées sur la programmation DC et DCA pour des problèmes combinatoires en variables mixtes 0–1, applications à la planification opérationnelle. These de doctorat dirigée par Le Thi H.A, Informatique Metz (2010)Google Scholar
  13. 13.
    Niu, Y.S., Pham, D.T.: A DC Programming Approach for Mixed-Integer Linear Programs. In: Le Thi, H.A., Bouvry, P., Pham, D.T. (eds.) Modelling, Computation and Optimization in Information Systems and Management Sciences (MCO 2008), Communications in Computer and Information Science, vol. 14, pp. 244–253. Springer, Berlin (2008). Scholar
  14. 14.
    Niu, Y.S.: Programmation DC & DCA en Optimisation Combinatoire et Optimisation Polynomiale via les Techniques de SDP–Codes et Simulations Numériques. Ph.D. thesis, INSA-Rouen, France (2010)Google Scholar
  15. 15.
    Niu, Y.S., Pham D.T.: Efficient DC programming approaches for mixed-integer quadratic convex programs. In: International Conference on Industrial Engineering and Systems Management (IESM 2011), pp. 222–231 (2011)Google Scholar
  16. 16.
    Niu, Y.S.: On combination of DCA branch-and-bound and DC-Cut for solving mixed 0-1 linear program. In: 21st International Symposium on Mathematical Programming (ISMP 2012). Berlin (2012)Google Scholar
  17. 17.
    Niu, Y.S.: A parallel branch and bound with DC algorithm for mixed integer optimization. In: 23rd International Symposium in Mathematical Programming (ISMP 2018). Bordeaux, France (2018)Google Scholar
  18. 18.
    Pham, D.T., Le Thi, H.A.: Convex analysis approach to D.C. programming: theory, algorithm and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)Google Scholar
  19. 19.
    Pham, D.T., Le Thi, H.A.: A D.C. optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pham, D.T., Le Thi, H.A., Pham, V.N., Niu, Y.S.: DC programming approaches for discrete portfolio optimization under concave transaction costs. Optim. Lett. 10(2), 261–282 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). Scholar
  22. 22.
    Schleich, J., Le Thi, H.A., Bouvry, P.: Solving the minimum M-dominating set problem by a continuous optimization approach based on DC programming and DCA. J. Comb. Optim. 24(4), 397–412 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Mathematical SciencesShanghai Jiao Tong UniversityShanghaiChina
  2. 2.SJTU-Paristech Elite Institute of Technology, Shanghai Jiao Tong UniversityShanghaiChina
  3. 3.Allée des techniques avancéesEnsta ParistechPalaiseauFrance

Personalised recommendations