Skip to main content

On Lagrange Duality for Several Classes of Nonconvex Optimization Problems

  • Conference paper
  • First Online:
Optimization of Complex Systems: Theory, Models, Algorithms and Applications (WCGO 2019)

Abstract

We investigate a general framework for studying Lagrange duality in some classes of nonconvex optimization problems. To this aim we use an abstract convexity theory, namely \(\varPhi \)-convexity theory, which provides tools for investigating nonconvex problems in the spirit of convex analysis (via suitably defined subdifferentials and conjugates). We prove a strong Lagrangian duality theorem for optimization of \(\varPhi _{lsc}\)-convex functions which is based on minimax theorem for general \(\varPhi \)-convex functions. The class of \(\varPhi _{lsc}\)-convex functions contains among others, prox-regular functions, DC functions, weakly convex functions and para-convex functions. An important ingredient of the study is the regularity condition under which our strong Lagrangian duality theorem holds. This condition appears to be weaker than a number of already known regularity conditions, even for convex problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bačák, M., Borwein, J.M.: On difference convexity of locally Lipschitz functions. Optimization 60(8–9), 961–978 (2011). https://doi.org/10.1080/02331931003770411

  2. Bednarczuk, E.M., Syga, M.: On minimax theorems for lower semicontinuous functions in Hilbert spaces. J. Convex Anal. 25(2), 389–402 (2018)

    Google Scholar 

  3. Bernard, F., Thibault, L.: Prox-regular functions in Hilbert spaces. J. Math. Anal. Appl. 303(1), 1–14 (2005). https://doi.org/10.1016/j.jmaa.2004.06.003

    Google Scholar 

  4. Boţ, R.I., Csetnek, E.R.: Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements. Optimization 61(1), 35–65 (2012). https://doi.org/10.1080/02331934.2010.505649

    Google Scholar 

  5. BoŢ, R.I., Wanka, G.: Duality for composed convex functions with applications in location theory, pp. 1–18. Deutscher Universitätsverlag, Wiesbaden (2003). https://doi.org/10.1007/978-3-322-81539-2

  6. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, vol. 58. Birkhauser Boston, MA (2004)

    Google Scholar 

  7. Dolecki, S., Kurcyusz, S.: On \(\phi \)-convexity in extremal problems. SIAM J. Control Optim. 16, 277–300 (1978)

    Google Scholar 

  8. Harada, R., Kuroiwa, D.: Lagrange-type duality in DC programming. J. Math. Anal. Appl. 418(1), 415–424 (2014). https://doi.org/10.1016/j.jmaa.2014.04.017

    Google Scholar 

  9. Hare, W., Poliquin, R.: The quadratic Sub-Lagrangian of a prox-regular function. Nonlinear Anal. 47, 1117–1128 (2001). https://doi.org/10.1016/S0362-546X(01)00251-6

  10. Martínez-Legaz, J.E., Volle, M.: Duality in D.C. programming: the case of several D.C. constraints. J. Math. Anal. Appl. 237(2), 657–671 (1999). https://doi.org/10.1006/jmaa.1999.6496

  11. Pallaschke, D., Rolewicz, S.: Foundations of Mathematical Optimization. Kluwer Academic (1997)

    Google Scholar 

  12. Rockafellar, R., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Google Scholar 

  13. Rolewicz, S.: Paraconvex analysis. Control Cybern. 34, 951–965 (2005)

    Google Scholar 

  14. Rubinov, A.M.: Abstract Convexity and Global Optimization. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  15. Singer, I.: Duality for D.C. optimization problems, pp. 213–258. Springer, New York (2006). https://doi.org/10.1007/0-387-28395-1

  16. Sun, X., Long, X.J., Li, M.: Some characterizations of duality for DC optimization with composite functions. Optimization 66(9), 1425–1443 (2017). https://doi.org/10.1080/02331934.2017.1338289

    Google Scholar 

  17. Syga, M.: Minimax theorems for \(\phi \)-convex functions: sufficient and necessary conditions. Optimization 65(3), 635–649 (2016). https://doi.org/10.1080/02331934.2015.1062010

    Google Scholar 

  18. Syga, M.: Minimax theorems for extended real-valued abstract convex-concave functions. J. Optim. Theory Appl. 176(2), 306–318 (2018). https://doi.org/10.1007/s10957-017-1210-4

    Google Scholar 

  19. Syga, M.: Minimax theorems via abstract subdifferential. preprint (2019)

    Google Scholar 

  20. Tuy, H.: D.C. Optimization: theory, methods and algorithms (1995). https://doi.org/10.1007/978-1-4615-2025-2

  21. Vial, J.P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8(2), 231–259 (1983). https://doi.org/10.1287/moor.8.2.231

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Syga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bednarczuk, E.M., Syga, M. (2020). On Lagrange Duality for Several Classes of Nonconvex Optimization Problems. In: Le Thi, H., Le, H., Pham Dinh, T. (eds) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, vol 991. Springer, Cham. https://doi.org/10.1007/978-3-030-21803-4_18

Download citation

Publish with us

Policies and ethics