Abstract
To evaluate the effect of undersaturation of magnetic hysteresis loops measured in moderate (<2 T) fields in magnetically hard minerals such as goethite or hematite, we measured room temperature hysteresis loops in a 7 T field and DC backfield demagnetization curves in fields up to 3 T using an MPMS 3 instrument. Sediments from different regions of the East European platform, mostly of Carboniferous age were used for this study. Similar experiments were also carried out for a small collection of archaeological ceramics (bricks) apparently containing a High Coercivity Low unblocking Temperature (HCLT) magnetic phase (ε-Fe2O3?). Hysteresis measurements were complemented by thermomagnetic analysis at low and high temperatures, microscopic observations, and X-ray diffraction studies. High-field magnetic hysteresis loops alone appear insufficient to definitively discriminate goethite from hematite, though there is, expectedly, a tendency that increasing goethite content leads to magnetic hardening, with coercive force reaching 1 T and coercivity of remanence 1.7 T. At the same time, ε-Fe2O3 can seemingly be distinguished from either hematite or goethite due to its high saturation magnetization. However, combining hysteresis measurements with low- and high-temperature thermomagnetic analysis provides a much better insight into the magnetic mineralogy of samples. Still, acquiring the reference data on well characterized hematite, goethite, and ε-Fe2O3 samples is highly desirable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Khramov, A.N.: Paleomagnetology. Springer, Heidelberg (1987)
Kodama, K.P.: Paleomagnetism of Sediments and Sedimentary Rocks: Process and Interpretation. Wiley, Chichester, West Sussex, Hoboken, NJ (2012)
McIntosh, G., Kovacheva, M., Catanzariti, G., Osete, M.L., Casas, L.: Widespread occurrence of a novel high coercivity, thermally stable, low unblocking temperature magnetic phase in heated archeological material. Geophys. Res. Lett. 34, L21302 (2007). https://doi.org/10.1029/2007GL031168
McIntosh, G., Kovacheva, M., Catanzariti, G., Donadini, F., Osete Lopez, M.L.: High coercivity remanence in baked clay materials used in archeomagnetism. Geochem. Geophys. Geosyst. 12, Q02003 (2011). https://doi.org/10.1029/2010GC003310
López-Sánchez, J., McIntosh, G., Osete, M.L., del Campo, A., Villalaín, J.J., Pérez, L., Kovacheva, M., Rodríguez de la Fuente, O.: Epsilon iron oxide: origin of the high coercivity stable low Curie temperature magnetic phase found in heated archeological materials. Geochem. Geophys. Geosyst. 18(7), 2646–2656 (2017)
Jin, J., Hashimoto, K., Ohkoshi, S.-I.: Formation of spherical and rod-shaped ε-Fe2O3 nanocrystals with a large coercive field. J. Mater. Chem. 15, 1067–1071 (2005)
Gich, M., et al.: High- and low-temperature crystal and magnetic structures of ε-Fe2O3 and their correlation to its magnetic properties. Chem. Mater. 18(16), 3889–3897 (2006)
Day, R., Fuller, M., Schmidt, V.A.: Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter. 13, 260–267 (1977)
Dunlop, D.J.: Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. 107 (2002). https://doi.org/10.1029/2001jb000486
Dunlop, D.J.: Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J. Geophys. Res. 107 (2002). https://doi.org/10.1029/2001jb000487
Roberts, A.P., Tauxe, L., Heslop, D., Zhao, X., Jiang Z.: A critical appraisal of the “Day” diagram. J. Geophys. Res. Solid Earth 123(4), 2618–2644 (2018)
Iosifidi, A.G., Mikhailova, V.A., Popov, V.V., Sergienko, E.S., Danilova, A.V., Otmas, N.M., Zhuravlev, A.V.: Carboniferous of the Russian platform: paleomagnetic data. In: Nurgaliev, D., Shcherbakov, V., Kosterov, A., Spassov, S. (eds.) Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism, pp. 37–54. Springer International Publishing, Cham (2019)
Iosifidi, A.G., Sergienko, E.S., Sal’naya, N.V., Otmas, N.M., Mikhailova, V.A., Danilova, A.V.: Paleomagnetic studies of late Visean deposits from Moscow syneclise (Leningrad region, rivers Lininka and Ragusha) [Paleomagnitnye issledovaniya pozdnevizeyskikh otlozheniy Moskovskoy sineklizy (Leningradskaya obl., r. Lininka, r. Ragusha)]. In: Proceedings of the 12th School-Conference “Problems of Geocosmos”, St. Petersburg, 8–12 Oct 2018, pp. 101–104 (2018) (in Russian)
Pettijohn, F.J.: Sedimentary Rocks, 3rd edn, xii, 628 p. Harper & Row, New York (1975)
Özdemir, Ö., Dunlop, D.J.: Thermoremanence and Néel temperature of goethite. Geophys. Res. Lett. 23, 921–924 (1996)
Guyodo, Y., Mostrom, A., Lee Penn, R., Banerjee, S.K.: From nanodots to nanorods: oriented aggregation and magnetic evolution of nanocrystalline goethite. Geophys. Res. Lett. 30, 1512 (2003). https://doi.org/10.1029/2003GL017021
Verwey, E.J.W.: Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144, 327–328 (1939)
Aragón, R., Buttrey, D.J., Shepherd, J.P., Honig, J.M.: Influence of nonstoichiometry on the Verwey transition. Phys. Rev. B 31, 430–436 (1985)
Özdemir, Ö., Dunlop, D.J., Moskowitz, B.M.: The effect of oxidation on the Verwey transition in magnetite. Geophys. Res. Lett. 20, 1671–1674 (1993)
Starunov, V.A., Kosterov, A., Sergienko, E.S., Yanson, S.Y., Markov, G.P., Kharitonskii, P.V., Sakhatskii, A.S., Lezova, I.E., Shevchenko, E.V.: Magnetic properties of tektite-like impact glasses from Zhamanshin astrobleme, Kazakhstan. In: Nurgaliev, D., Shcherbakov, V., Kosterov, A., Spassov, S. (eds.) Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism, pp. 445–465. Springer International Publishing, Cham (2019)
Rochette, P., Mathé, P.-E., Esteban, L., Rakoto, H., Bouchez, J.-L., Liu, Q., Torrent, J.: Non-saturation of the defect moment of goethite and fine-grained hematite up to 57 Teslas. Geophys. Res. Lett. 32, L22309 (2005). https://doi.org/10.1029/2005GL024196
Morin, F.J.: Magnetic susceptibility of αFe2O3 and αFe2O3 with added titanium. Phys. Rev. 78, 819–820 (1950)
Acknowledgements
Natalya Salnaya (Institute of Physics of the Earth, Russian Academy of Sciences) greatly assisted in sampling at Lininka and Ragusha in 2017, and donated the samples of bricks from Yaroslavl. Bricks from Valaam Island were donated by Vladimir Karpinsky (Earth Physics Department, St. Petersburg State University). Measurements were carried out at the resource centers of the Scientific Park of St. Petersburg State University: Centre for Geo-Environmental Research and Modelling (GEOMODEL), Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics, Centre for Innovative Technologies of Composite Nanomaterials, Centre for Microscopy and Microanalysis, and Centre for X-ray Diffraction Studies. The study was partially supported by the Russian Foundation for Basic Research via grants 16-05-00603a and 18-05-00626a.
This paper benefited from the reviews by Aleksey Smirnov and Mike Jackson.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kosterov, A., Sergienko, E.S., Iosifidi, A.G., Kharitonskii, P.V., Yanson, S.Y. (2020). Analysis of Strong-Field Hysteresis in High Coercivity Magnetic Minerals. In: Yanovskaya, T., Kosterov, A., Bobrov, N., Divin, A., Saraev, A., Zolotova, N. (eds) Problems of Geocosmos–2018. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-21788-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-21788-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-21787-7
Online ISBN: 978-3-030-21788-4
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)