Skip to main content

High Impulse Voltages

  • Chapter
  • First Online:
High Voltage Measurement Techniques

Part of the book series: Power Systems ((POWSYS))

  • 1198 Accesses

Abstract

In power supply networks for the transmission and distribution of electrical energy at high voltage, transient voltages of more than 1 MV can occur due to lightning or switching operations. Because of their high magnitudes and short rise times, ranging from a fraction of a microsecond to milliseconds, the overvoltages cause enhanced stress on the insulation of the affected high-voltage apparatus, such as power transformers, switchgears, arrestors, insulators, power cables, etc. Therefore, before commissioning, each high-voltage apparatus must undergo acceptance tests with standardized impulse test voltages. The chapter introduces the standardized quantities and measurement methods and briefly describes the basic principles of impulse voltage generators. The various systems for measuring impulse voltages with resistive, capacitive or mixed voltage dividers and digital recorders are discussed in detail. The main focus is on digital measuring systems with computer-aided data processing that enable automated data acquisition, data filtering of impulses with overshoot, online monitoring and on-site tests. A well-founded measurement technique is essential and is achieved mainly by comparison measurement with a reference system. One important property of an impulse measuring system is its step response, which characterizes the transfer behavior. Short descriptions of analog measurement methods and devices that are still in use, including the standard sphere gap, are included. High impulse voltages are also used for applications in other fields of physics and engineering, such as plasma physics, electric spot-welding, electro-shock weapons, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schon, K.: Korrektur des Scheitelwertes von Keilstoßspannungen unter Berücksichtigung des genauen Abschneidezeitpunktes. etz-Archiv 5, 233–237 (1983)

    Google Scholar 

  2. Berlijn, S.: Influence of lightning impulses to insulating systems. Thesis, TU Graz (2000)

    Google Scholar 

  3. Li, Y., Rungis, J.: Analysis of lightning voltage with overshoot. In: Proceedings of 14th ISH Beijing, Paper B-08 (2005)

    Google Scholar 

  4. Hällström, J., et al.: Applicability of different implementations of K-factor filtering schemes for the revision of IEC 60060-1 and -2. In: Proceedings of 14th ISH Beijing, Paper B 32 (2005)

    Google Scholar 

  5. Simón, P., Garnacho, F., Berlijn, S.M., Gockenbach, E.: Determining the test voltage factor function for the evaluation of lightning impulses with oscillations and/or overshoot. IEEE Trans. PWRD 21, 560–566 (2006)

    Google Scholar 

  6. Nilsson, A., Mannikoff, A., Hällström, J., Li, Y.: New procedures for determination of parameters of lightning impulse voltage waveforms. In: Proceedings of 15th ISH Ljubljana, Paper T10-399 (2007)

    Google Scholar 

  7. Lewin, P.L., Tran, T.N., Swaffield, D.J., Hällström, J.: Zero phase filtering for lightning impulse evaluation: a K-factor filter for the revision of IEC 60060-1 and -2. IEEE Trans. PWRD 23, 3–12 (2008)

    Google Scholar 

  8. Pfeffer, A., Tenbohlen, S.: Analysis of full and chopped lightning impulse voltages from transformer tests using the new k-factor approach. In: Proceedings of 16th ISH Johannesburg, Paper A-10 (2009)

    Google Scholar 

  9. Schon, K.: Digital filtering of hv lightning impulses. IEEE Panel Session “Digital Techniques in HV Tests”, Long Beach, California (1989)

    Google Scholar 

  10. Sato, S., Harada, T.: Lightning impulse parameter determination by means of moving average method. In: Proceedings of 13th ISH Delft, Paper 807 (2003)

    Google Scholar 

  11. Li, Y., Rungis, J.: Precision digital filters for high voltage impulse measuring systems. IEEE Trans. PWRD 14, 1213–1220 (1999)

    Google Scholar 

  12. Gockenbach, E.: A simple and robust evaluation procedure for high-voltage impulses. In: IEEE International Symposium on Digital Techniques in High Voltage Measurement. Toronto, Session 3 (1991)

    Google Scholar 

  13. Wolf, J., Gamlin, M.: A new modular design for a new generation of impulse voltage generators. In: Proceedings of 13th ISH Delft, Paper 797 (2003)

    Google Scholar 

  14. Ai, X., Ding, J.: An outdoor 7.2 MV impulse generator. 16. ISH Johannesburg, paper G-16 (2009)

    Google Scholar 

  15. Stolle, D., Peier, D.: Reproducibility of Marx generators. In: Proceedings of 5th ISH Braunschweig, Paper 61.04 (1987)

    Google Scholar 

  16. Etzel, O., Helmchen, G.: Berechnung der Elemente des Stoßspannungskreises für die Stoßspannungen 1,2/50, 1,2/5 und 1,2/200. ETZ-A 85, 578–582 (1964)

    Google Scholar 

  17. Heilbronner, F.: Firing and voltage shape of multistage impulse generators. IEEE Trans. PAS 90, 2233–2238 (1971)

    Article  Google Scholar 

  18. Del Vecchio, R.M., Ahuja, R., Frenette, R.: Determining ideal impulse generator settings from a generator-transformer circuit model. IEEE Trans. PWRD 17, 1–4 (2002)

    Google Scholar 

  19. Goody, R.W.: OrCAD PSpice for WINDOWS, vol. I–III. Prentice Hall, New Jersey (2001)

    Google Scholar 

  20. Heinemann, R.: PSPICE – Einführung in die Elektroniksimulation. Carl Hanser Verlag München (2004)

    Google Scholar 

  21. Schufft, W., Hauschild, W., Pietsch, R.: Determining impulse generator settings for various test cases with the help of a www-based simulation program. In: Proceedings of 14th ISH Beijing, Paper J58 (2005)

    Google Scholar 

  22. Sato, S.: Automatic determination of circuit constants fulfilling the given impulse time parameters. In: Proceedings of 15th ISH Ljubljana, Paper T10-313 (2007)

    Google Scholar 

  23. Kind, D., Salge, J.: Über die Erzeugung von Schaltspannungen mit Hochspannungsprüftransformatoren. ETZ-A 86, 648–651 (1965)

    Google Scholar 

  24. Anis, H., Trinh, N.G., Train, D.: Generation of switching impulses using high voltage testing transformers. IEEE Trans. PAS 94, 187–195 (1975)

    Article  Google Scholar 

  25. Okabe, S., Tsuboi, T., Takami, J.: Influence of test equipment capacitance and residual inductance on waveform front generated in lightning impulse voltage test. In: Proceedings of 16th ISH Johannesburg, Paper A-55 (2009)

    Google Scholar 

  26. Matsumoto, S.: Analysis of waveform parameters for oscillating impulse voltage. In: Proceedings of 15th ISH Ljubljana, Paper T10-621 (2007)

    Google Scholar 

  27. Wolf, J., Voigt, G.: A new solution for the extension of the load range of impulse voltage generators. In: Proceedings of 10th ISH Montreal, Paper 3375 (1997)

    Google Scholar 

  28. Schwenk, K., Gamlin, M.: Load range extension methods for lightning impulse testing with high voltage impulse generators. In: Proceedings of 14th ISH Beijing, Paper B-78 (2005)

    Google Scholar 

  29. Hinow, M., Steiner, T.: Influence of the new k-factor method of the IEC draft 600060-1 on the evaluation of lightning impulse parameters in relation to ultrahigh-voltage testing. In: Proceedings of 16th ISH Johannesburg, Paper G-14 (2009)

    Google Scholar 

  30. Ishikura, T., et al.: Insulation characteristics with respect to the front time extension in lightning impulse voltage test for UHV equipment. In: Proceedings of 18th ISH Seoul, Paper OC2-02 (2013)

    Google Scholar 

  31. Papachristos, G., Woschnagg, E.: Norm- und Schaltstoßspannungsprüfung von Transformatoren und Kompensations-Drosselspulen. Digitale Berechnung der Spannungswellenform und Diagramme zur Dimensionierung des Stoßkreises. Bull. SEV 65, 721–731 (1974)

    Google Scholar 

  32. Kannan, S.R., Narayana Rao, Y.: Prediction of the parameters of an impulse generator for transformer testing. Proc. IEE 120, 1001–1005 (1973)

    Google Scholar 

  33. Glaninger, P.: Stoßspannungsprüfung an elektrischen Betriebsmitteln kleiner Induktivität. In: Proceedings of 2nd ISH, pp. 140–144 (1975)

    Google Scholar 

  34. Feser, K.: Auslegung von Stoßgeneratoren für die Blitzstoßspannungsprüfung von Transformatoren. Bull. SEV 69, 973–979 (1978) (Translated version available as Haefely Scientific Document E1-41: Circuit design of impulse generators for the lightning impulse voltage testing of transformers)

    Google Scholar 

  35. Lakshmi, P.V., Sarma, S., Singh, B.P., Tiwari, R.K.: Determination of tuning parameters for reducing the overshoot during impulse test of power transformer. In: Proceedings of 13th ISH Delft Paper 87 (2003)

    Google Scholar 

  36. Schrader, W., et al.: The generation of switching impulse voltages up to 3.9 MV with a transformer cascade of 3 MV. In: Proceedings of 6th ISH New Orleans, Paper 47.39 (1989)

    Google Scholar 

  37. Feser, K., Rodewald, A.: Eine triggerbare Mehrfachabschneidefunkenstrecke für hohe Blitz- und Schaltstoßspannungen. In: Proceedings of 1st ISH München, pp. 124–131 (1972) (Translated version available as Haefely Scientific Document: A triggered multiple chopping gap for lightning and switching impulses)

    Google Scholar 

  38. Kärner, H.: Erzeugung steilster Stoßspannungen hoher Amplitude. Bull. SEV 58, 1096–1110 (1967)

    Google Scholar 

  39. Feser, K.: Gedanken zur Prüf- und Messtechnik bei Steilstoßspannungen. HIGHVOLT Kolloquium Dresden, Paper 1.4 (1997)

    Google Scholar 

  40. McDonald, D.F., Benning, C.J., Brient, S.J.: Subnanosecond risetime multikilovolt pulse generator. Rev. Sci. Instr. 36, 504–506 (1965)

    Article  Google Scholar 

  41. Feser, K., Modrusan, M., Sutter, H.: Steep front impulse generators. In: Proceedings of 3rd ISH Mailand, Paper 41.06 (1979)

    Google Scholar 

  42. Dams, J., Dunz, T., Küchler, A., Schwab, A.: Design and operation of a Terawatt pulse-power generator. In: Proceedings of 5th ISH Braunschweig, Paper 61.02 (1987)

    Google Scholar 

  43. Cadilhon, B., et al.: Design, realisation and experimental study of a 200 kV, 1 ns rise-time Marx generator. In: Proceedings of 15th ISH Ljubljana, Paper T2–397 (2007)

    Google Scholar 

  44. Chang, Y.-M.: Steep front pulse generation using coaxial Marx circuit for EMC test. In: Proceedings of 18th ISH Seoul, Paper PB-29 (2013)

    Google Scholar 

  45. Yashima, M., et al.: Development of 1 MV steep-front rectangular impuls voltage generator. In: Proceedings of 11th ISH London, Paper 5.394.S26 (1999)

    Google Scholar 

  46. Salge, J., Peier, D., Brilka, R., Schneider, D.: Application of inductive energy storage for the production of intense magnetic fields. In: Proceedings of 6th Symposium on Fusion Technology, Aachen (1970)

    Google Scholar 

  47. Kind, D., Salge, J., Schiweck, L., Newi, G.: Explodierende Drähte zur Erzeugung von Megavolt-Impulsen in Hochspannungsprüfkreisen. ETZ-A 92, 46–51 (1971)

    Google Scholar 

  48. Feser, K.: MIGUS – EMP-Simulator für die Überprüfung der EMV. etz 108, 420–423 (1987)

    Google Scholar 

  49. Bellaschi, P.L.: The measurement of high-surge voltages. Trans. A.I.E.E. 52, 544–567 (1933)

    Article  Google Scholar 

  50. Feser, K.: Messung hoher Stoßspannungen. ETZ Bd. 104, 881–886 (1983)

    Google Scholar 

  51. Modrusan, M.: Hochspannungsteiler: Typen, Messeigenschaften und Einsatz. Bull. ASE/UCS 74, 1030–1037 (1983)

    Google Scholar 

  52. Yao, Z.G.: The standard impulse voltage waveforming in a test system including HV lead. In: Proceedings of 5th ISH Braunschweig, Paper 63.15 (1987)

    Google Scholar 

  53. Zaengl, W.: Das Messen hoher, rasch veränderlicher Stoßspannungen. Thesis, TH München (1964)

    Google Scholar 

  54. Zaengl, W., Feser, K.: Ein Beitrag zur Berechnung des Übertragungsverhaltens von Stoßspannungsteilern. Bull. SEV 55, 1249–1256 (1964)

    Google Scholar 

  55. Zaengl, W.: Ein neuer Teiler für steile Stoßspannungen. Bull. SEV 56, 232–240 (1965)

    Google Scholar 

  56. Feser, K.: Einfluss des Niederspannungsteiles auf das Übertragungsverhalten von Stoßspannungsteilern. Bull. SEV 57, 695–701 (1966)

    Google Scholar 

  57. Zaengl, W.: Der Stoßspannungsteiler mit Zuleitung. Bull. SEV 61, 1003–1017 (1970)

    Google Scholar 

  58. Zaengl, W.: Ein Beitrag zur Schrittantwort kapazitiver Spannungsteiler mit langen Messkabeln. etz-a Bd. 98, 792–795 (1977)

    Google Scholar 

  59. Malewski, R., Maruvada, P.S.: Computer assisted design of impulse voltage dividers. IEEE Trans. PAS 95, 1267–1274 (1976)

    Article  Google Scholar 

  60. Di Napoli, A., Mazzetti, C.: Time-analysis of H.V. resistive divider from the electromagnetic field computation. In: Proceedings of 3rd ISH Mailand, Paper 42.10 (1979)

    Google Scholar 

  61. Kato, S.: Analysis of voltage divider response by finite element method. In: Proceedings of 5th ISH Braunschweig, Paper 71.07 (1987)

    Google Scholar 

  62. Kawaguchi, Y., Murase, H., Koyama, H.: Unit step response simulation of impulse voltage measuring system by EMTP. In: Proceedings of 8th ISH Yokohama, Paper 51.07 (1993)

    Google Scholar 

  63. Zucca, M., Sardi, A., Bottauscio, O., Saracco, O.: Modeling H.V. reference dividers for lightning impulses. In: Proceedings of 11th ISH London, Paper 1.70.S21 (1999)

    Google Scholar 

  64. Baba, Y., Ishii, M.: Numerical electromagnetic analysis of unit step responses of impulse voltage. In: Proceedings of 13rd ISH Delft, Paper 659 (2003)

    Google Scholar 

  65. Schwab, A.J., Herold, J.: Electromagnetic interference in impulse measuring systems. IEEE Trans. PAS 93, 333–339 (1974)

    Article  Google Scholar 

  66. Schwab, A.J.: Elektromagnetische Verträglichkeit. Springer, Berlin (1990)

    Book  Google Scholar 

  67. Peier, D.: Elektromagnetische Verträglichkeit. Hüthig Buch Verlag, Heidelberg (1990)

    Google Scholar 

  68. van Waes, J.B.M., et al.: EMC analysis of voltage measuring systems in high power laboratory. In: Proceedings of 10th ISH Montréal, Paper 3331 (1997)

    Google Scholar 

  69. Smolke, M., Engelmann, E., Kindersberger, J.: Shielding effectiveness of boxes with apertures with respect to magnetic lightning impulse fields. In: Proceedings of 10th ISH Montreal, Paper 3250 (1997)

    Google Scholar 

  70. Wenger, P., Yan, W., Li, Y.: A reference resistive voltage divider for switching impulses. In: Proceedings of 19th ISH Pilsen, Paper 307 (2015)

    Google Scholar 

  71. Mahdjuri-Sabet, F.: Das Übertragungsverhalten von mäanderförmig gewebten Drahtwiderstandsbändern in Hochspannungsversuchsschaltungen. Arch. E-techn. 59, 69–73 (1977)

    Article  Google Scholar 

  72. Sundermann, U., Peier, D.: Transfer characteristics of meander wound resistors. In: Proceedings of 7th ISH Dresden, Paper 61.14 (1991)

    Google Scholar 

  73. Campisi, F., Rinaldi, E., Rizzi, G., Valagussa, C.: A new wire wound resistive divider for steep front impulse tests: design criteria and calibration procedure. In: Proceedings of 11th ISH London, Paper 1.164.P4 (1999)

    Google Scholar 

  74. Bossi, S., Rizzi, G., Valagussa, C., Garbagnati, E.: A special screened resistor-type divider for the measurement of the fast front-chopped impulses. In: Proceedings of 6th ISH New Orleans, Paper 47.42 (1989)

    Google Scholar 

  75. Harada, T., Wakimoto, T., Sato, S., Saeki, M.: Development of national standard class reference divider for impulse voltage measurements. In: Proceedings of 11th ISH London, Paper 1.13.S1 (1999)

    Google Scholar 

  76. Goosen, R.F., Provoost, P.G.: Fehlerquellen bei der Registrierung hoher Stoßspannungen mit dem Kathodenstrahl-Oszillographen. Bull. SEV 37, 175–184 (1946)

    Google Scholar 

  77. Peier, D.: Ohmscher Stoßspannungsteiler mit kleiner Antwortzeit. PTB-Mitt. 88, 315–318 (1978)

    Google Scholar 

  78. Peier, D., Stolle, D.: Resistive voltage divider for 1 MV switching and lightning voltages. In: Proceedings of 5th ISH Braunschweig, Paper 73.02 (1987)

    Google Scholar 

  79. Sfakianakis, Z.: 1000 kV resistive divider for measuring non-standard lightning impulses. In: Proceedings of 5th ISH Braunschweig, Paper 73.03 (1987)

    Google Scholar 

  80. Harada, T., Itami, T., Aoshima, Y.: Resistor divider with dividing element on high voltage side for impulse voltage measurements. IEEE Trans. PAS 90, 1407–1414 (1971)

    Article  Google Scholar 

  81. Harada, T., Aoshima, Y., Kawamura, T., Ohira, N., Kishi, K., Takigami, K., Horiko, Y.: A high quality voltage divider using optoelectronics for impulse voltage measurements. IEEE Trans. PAS 91, 494–500 (1972)

    Article  Google Scholar 

  82. Kind, D., Arndt, V.: Hochspannungsteiler mit optimierter Abgriffshöhe. Unpublished Paper (1992)

    Google Scholar 

  83. Kouno, T., Kato, S., Kikuchi, K., Maruyama, Y.: A new voltage divider covered with metal sheath and improved by frequency division method. In: Proceedings of 2nd ISH Zürich, pp. 222–225 (1975)

    Google Scholar 

  84. Groh, H.: Hochspannungsteiler mit 4 Nanosekunden Anstiegszeit. etz-a Bd. 98, 436–438 (1977)

    Google Scholar 

  85. Aro, M., Punkka, K., Huhdanmäki, J.: Fast divider for steep front impulse voltage tests. In: Proceedings of 5th ISH Braunschweig, Paper 73.01 (1987)

    Google Scholar 

  86. Denicolai, M., Hällström, J.: A self-balanced, liquid resistive, high impedance HV divider. In: Proceedings of 14th ISH Beijing, Paper J-05 (2005)

    Google Scholar 

  87. Burch, F.G.: On potential dividers for cathode-ray oscillographs. Phil. Mag. 13, 760–774 (1932)

    Article  Google Scholar 

  88. Schwab, A.J., Pagel, J.H.W.: Precision capacitive voltage divider for impulse voltage measurements. IEEE Trans. PAS 91, 2376–2382 (1972)

    Article  Google Scholar 

  89. Wolzak, G.G., van der Laan, P.C.T.: A new concept for impulse voltage dividers. In: Proceedings of 4th ISH Athen, Paper 61.11 (1983)

    Google Scholar 

  90. Shi, B., Zhang, W., Qiu, Y.: A new type of divider for measuring fast rising high voltage impulses. In: Proceedings 10th ISH Montreal, Paper 3088 (1997)

    Google Scholar 

  91. Zaengl, W., Weber, H.J.: A high voltage divider made for education and simulation. In: Proceedings of 6th ISH New Orleans, Paper 41.06 (1989)

    Google Scholar 

  92. Malewski, R., Hyltén-Cavallius, N.: A low voltage arm for EHV impulse dividers. IEEE Trans. PAS 93, 1797–1804 (1974)

    Article  Google Scholar 

  93. Harada, T., Aoshima, Y., Harada, M., Hiwa, K.: Development of high-performance low voltage arms for capacitive voltage dividers. In: Proceedings of 3rd ISH Mailand, Paper 42.14 (1979)

    Google Scholar 

  94. Li, Y., Rungis, J.: Compensation of step response “creeping” of a damped capacitive divider for switching impulses. In: Proceedings of 11th ISH London, Paper 1.128.P4 (1999)

    Google Scholar 

  95. Feser, K.: Ein neuer Spannungsteiler für die Messung hoher Stoß- und Wechselspannungen. Bull. SEV 62, 929–935 (1971)

    Google Scholar 

  96. Feser, K., Rodewald, A.: Die Übertragungseigenschaften von gedämpft kapazitiven Spannungsteilern über 1 MV. In: Proceedings of 1st ISH München (1972)

    Google Scholar 

  97. Feser, K.: Transient behaviour of damped capacitive voltage dividers of some million volts. IEEE Trans. 93, 116–121 (1974)

    Google Scholar 

  98. Feser, K.: Ein Beitrag zur Berechnung der Spannungsverteilung von Hochspannungskondensatoren. Bull. SEV 61, 345–348 (1970)

    Google Scholar 

  99. Arndt, V.; Schon, K.: On the uncertainty of the new IEC response parameters. In: Proceedings of 8th ISH Yokohama, Paper 51.02, pp. 293–296 (1993)

    Google Scholar 

  100. Harada, T., Aoshima, Y., Okamura, T., Hiwa, K.: Development of a high voltage universal divider. IEEE Trans. PAS 95, 595–602 (1976)

    Article  Google Scholar 

  101. Breilmann, W.: Effects of the leads on the transient behaviour of a coaxial divider for the measurement of high alternating and impulse voltages. In: Proceedings of 3rd ISH Mailand, Paper 42.12 (1979)

    Google Scholar 

  102. Meppelink, J., Hofer, P.: Design and calibration of a high voltage divider for measurement of very fast transients in gas insulated switchgear. In: Proceedings of 5th ISH Braunschweig, Paper 71.08 (1987)

    Google Scholar 

  103. Gsodam, H., Muhr, M., Pack, S.: Response of the measurement circuit for high frequency transient overvoltages. In: Proceedings of 5th ISH Braunschweig, paper 71.09 (1987)

    Google Scholar 

  104. Bradley, D.A.: A voltage sensor for measurement of GIS fast transients. In: Proceedings of 6th ISH New Orleans, Paper 49.01 (1989)

    Google Scholar 

  105. Rao, M.M., Jain, H.S., Rengarajan, S., Sheriff, K.R.S., Gupta, S.C.: Measurement of very fast transient overvoltages (VFTO) in a GIS module. In: Proceedings of 11th ISH London, Paper 1.144.P4 (1999)

    Google Scholar 

  106. Liu, J.-L., et al.: Coaxial capacitive dividers for high-voltage pulse measurements in intense electron beam accelerator with water pulse-forming line. IEEE Trans. IM 58, 161–166 (2009)

    Google Scholar 

  107. Burow, S., Köhler, W., Tenbohlen, S., Strauchmann, U.: Messung und Dämpfung von sehr schnellen Transienten (VFT) in gasisolierten Schaltanlagen. ETG Fachtagung Kassel (2012)

    Google Scholar 

  108. Küchler, A., Dams, J., Dunz, T.H., Schwab, A.: Kapazitive Sensoren zur Messung transienter elektrischer Felder und Spannungen. Arch. E-techn. 68, 335–344 (1985)

    Article  Google Scholar 

  109. Kurrer, R., Feser, K., Krauß, T.: Antenna theory of flat sensors for partial discharge detection at ultra-high frequencies in GIS. In: Proceedings of 9th ISH Graz, Paper 5615 (1995)

    Google Scholar 

  110. Rizzi, R., Tronconi, G., Gobbo, R., Pesavento, G.: Determination of the linearity of impulse divider in the light of the revision of IEC 60: comparison among several methods. In: Proceedings of 8th ISH Yokohama, Paper 52.05 (1993)

    Google Scholar 

  111. Ishii, M., Li, D., Hojo, J.-I., Liao, W.-W.: A measuring system of high voltage impulse by way of electric field sensing. In: Proceedings of 8th ISH Yokohama, Paper 56.06 (1993)

    Google Scholar 

  112. Feser, K., Pfaff, W.: A potential free spherical sensor for the measurement of transient electric fields. IEEE Trans. PAS 103, 2904–2911 (1984)

    Article  Google Scholar 

  113. Pfaff, W.R.: Accuracy of a spherical sensor for the measurement of three dimensional electric fields. In: Proceedings of 5th ISH Braunschweig, Paper 32.05 (1987)

    Google Scholar 

  114. Krauß, T., Köhler, W., Feser, K.: High bandwidth potential-free electric field probe for the measurement of three dimensional fields. In: Proceedings of 10th ISH London, Paper 3061 (1997)

    Google Scholar 

  115. Feser, K., Pfaff, W., Weyreter, G., Gockenbach, E.: Distortion-free measurement of high impulse voltages. IEEE Trans. PD 3, 857–866 (1988)

    Google Scholar 

  116. Braun, A., Brzostek, E., Kind, D., Richter, H.: Development and calibration of electric field measuring devices. In: Proceedings of 6th ISH New Orleans, Paper 40.09 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Schon .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schon, K. (2019). High Impulse Voltages. In: High Voltage Measurement Techniques. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-21770-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21770-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21769-3

  • Online ISBN: 978-3-030-21770-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics