Skip to main content

Electron Structure and Optical Properties of Conjugated Systems in Solutions

  • Conference paper
  • First Online:
Modern Problems of the Physics of Liquid Systems (PLMMP 2018)

Abstract

The review deals with the special type of the organic molecules which contain the collective system of π-electrons; the mobility of the electrons that determines both the electron structure and spectral properties of considered conjugated molecules. The classification of the linear conjugated systems is proposed: polymethine dyes, polyenes, donor-acceptor compounds and the differences between them. It is shown that the high mobility of the collective π-electron shell depends on the type of the conjugated system, chain length, symmetry, molecular constitution of the terminal groups, as well as the electron shell (neutral or charge system). Experimentally, the features of the electron structure of conjugated molecules are observed by spectral methods, especially, in various solvents. It is established that different molecular types show the different sensitivity to the solvent polarity. The work reviews principal results that were obtained by the quantum-chemical and spectral study of the linear conjugated systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Daehne, Color and constitution. One hundred years of research. Science 199, 1163–116

    Google Scholar 

  2. S. Daehne, K. Hoffmann, Colour and constitution: linear free energy relationships and/or polymethinic colour rules. J. Mol. Str. 219, 403–409 (1990). https://doi.org/10.1016/0022-2860(90)80089-3

    Article  ADS  Google Scholar 

  3. S. Daehne, Der ideale Polymethin zustand. Chimia 45, 288–296 (1991). DOI: 200901100400230156

    Google Scholar 

  4. G. Bach, S. Daehne, Cyanine dyes and related compounds, in ROOD’S Chemistry of Carbon Compounds, 2nd suppl. to 2nd edn., vol. IVB, chapter 15, Heterocyclic Compounds, ed. by, M. Sainsbury (Elsevier Science, Amsterdam, 1997), pp. 383–481

    Chapter  Google Scholar 

  5. A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, G.B. Behera, Cyanine during the 1990s: a review. Chem. Rev. 100, 1973–2011 (2000). https://doi.org/10.1021/cr990402t

    Article  MATH  Google Scholar 

  6. G. Orlandi, F. Zerbetto, M.Z. Zgierski, Theoretical analysis of spectra of short polyenes. Chem. Rev. 91, 867–891 (1991). https://doi.org/10.1021/cr00005a012

    Article  Google Scholar 

  7. A.D. Kachkovsky, The nature of electronic transitions in linear conjugated systems. Russ. Chem. Rev. 66, 647–664 (1997). https://doi.org/10.1070/RC1997v066n08ABEH000274

    Article  ADS  Google Scholar 

  8. J.L. Bricks, A.D. Kachkovskii, Yu.L. Slominskii, A.O. Gerasov, S.V. Popov, Molecular design of near infrared polymethine dyes: a review. Dyes Pigments 121, 238–255 (2015). https://doi.org/10.1016/j.dyepig.2015.05.016

    Article  Google Scholar 

  9. H. Kuhn, A Quantum-mechanical theory of light absorption of organic dyes and similar compounds. J. Chem. Phys. 17, 1098–1212 (1949). https://doi.org/10.1063/1.1747143

    Article  Google Scholar 

  10. N.S. Bayliss, A “metalic” model for the spectra of conjugated polyenes. J. Chem. Phys. 16, 287–292 (1948). https://doi.org/10.1021/bk-2013-1122.ch004

    Article  ADS  Google Scholar 

  11. J.R. Platt, Wavelength formulas and configuration interaction in Brooker dyes and chain molecules. J. Chem. Phys. 25, 80–105 (1956). https://doi.org/10.1063/1.1742852

    Article  ADS  Google Scholar 

  12. M.L. Dekhtyar, Application of the quasi-long chain approximation to structural perturbation in polymethine dyes. Dyes & Pigments 28, 261–274 (1995). https://doi.org/10.1016/0143-7208(95)00065-8

    Article  Google Scholar 

  13. J. Fabian, TDDFT-calculations of Vis/NIR absorbing compounds. Dyes Pigments 84, 36–53 (2010). https://doi.org/10.1016/j.dyepig.2009.06.008

    Article  Google Scholar 

  14. S. Karaca, N. Elmaci, A computational study on the excited state properties of a cationic cyanine dye: TTBC. Comput. Theoret. Chem 964, 160–168 (2011). https://doi.org/10.1016/j.comptc.2010.12.016

    Article  Google Scholar 

  15. W.P. Su, J.R. Schrieffer, A.J. Heeger, Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (2011). https://doi.org/10.1103/physrevlett.42.1698

    Article  ADS  Google Scholar 

  16. W.P. Su, J.R. Schrieffer, A.J. Heeger, Solitons excitations in polyacetylene. Phys. Rev. 22, 2099–2111 (1980). https://doi.org/10.1103/PhysRevB.22.2099

    Article  ADS  Google Scholar 

  17. L.M. Tolbert, The photoexcited states of allyl anions. Acc. Chem. Res. 19, 268–273 (1986). https://doi.org/10.1021/ar00129a002

    Article  Google Scholar 

  18. L.M. Tolbert, Solitons in a box: the organic chemistry of electrically conducting polyenes. Acc. Chem. Res. 25, 561–568 (1992). https://doi.org/10.1021/ar00024a003

    Article  Google Scholar 

  19. A.D. Kachkovskii, The solitonic nature of ions of linear conjugated systems. Theoret. Exp. Chem. 41, 139–164 (2005). DOI: 0040-5760/05/4103-0139

    Google Scholar 

  20. F.M. Hamer, Cyanine Dyes and Related Compounds (Interscience, New York, 1964), 790 pp.

    Google Scholar 

  21. A.V. Kulinich, A.A. Ishchenko, Merocyanine dyes: synthesis, structure, properties and applications Russ. Chem. Rev. 78, 141–164 (2009). https://doi.org/10.1070/RC2009v078n02ABEH003900

    Article  Google Scholar 

  22. A.V. Kulinich, N.A. Derevyanko, E.K. Mikitenko, A.A. Ishchenko, Merocyanines based on 1,3ω-indanedione: electronic structure and solvatochromism. J. Phys. Org. Chem. 24, 732–742 (2011). https://doi.org/10.1002/poc.1821

    Article  Google Scholar 

  23. H. Mustroph, K. Reiner, B. Senns, J. Mistol, S. Ernst, D. Keil, L. Hennig, The effects of substituents and solvents on the ground-state π-electronic structure and electronic absorption spectra of a series of model merocyanine dyes and their theoretical interpretation. Chem. Eur. J. 18, 8140–8149 (2012). https://doi.org/10.1002/chem.201101830

    Article  Google Scholar 

  24. J. Bricks, J. Slominskii, M. Kudinova, Syntheses and photophysical properties of a series of cation-sensitive polymethine and styryl dyes. J. Photochem. Photobiol. A: Chem. 132, 193–208 (2000). https://doi.org/10.1016/S1010-6030(00)00208-2

    Article  Google Scholar 

  25. L. Brooker, G. Keyes, R. Sprague, Studies in the cyanine dye series. XI. The merocyanines. J. Am. Chem. Soc. 73, 5326–5332 (1951). https://doi.org/10.1021/ja01155a095

    Article  Google Scholar 

  26. N.V. Pilipchuk, G.O. Kachkovsky, Yu.L. Slominskii, O.D. Kachkovsky, Electronic properties of polymethine systems. 11. Absorption spectra and nature of cationic oxystyryl and their neutral derivatives. Dyes Pigments 71(1), 1–9 (2006). https://doi.org/10.1016/j.dyepig.2005.04.013

    Article  Google Scholar 

  27. B.I. Shapiro, Molecular assemblies of polymethine dyes. Russ. Chem. Rev. 75(5), 484–510 (2006). https://doi.org/10.1070/RC2006v075n05ABEH001208

    Article  Google Scholar 

  28. F. Wurthner, T.E. Kaiser, C.R. Saha-Muller, J-Aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed. 50, 3376–3410 (2011). https://doi.org/10.1002/anie.201002307

    Article  Google Scholar 

  29. Y.I. Prylutskyy, V.V. Cherepanov, M.P. Evstigneev, O.A. Kyzyma, V.I. Petrenko, V.I. Styopkin, L.A. Bulavin, N.A. Davidenko, D. Wyrzykowski, A. Woziwodzka, J. Piosik, R. Kaźmierkiewicz, U. Ritter, Structural self-organization of C60 and cisplatin in physiological solution. Phys. Chem. Chem. Phys. 17(39), 26084–26092 (2015). https://doi.org/10.1039/c5cp02688a.2

    Article  Google Scholar 

  30. Y.I. Prylutskyy, M.P. Evstigneev, V.V. Cherepanov, O.A. Kyzyma, L.A. Bulavin, N.A. Davidenko, P. Scharff, Structural organization of C60 fullerene, doxorubicin, and their complex in physiological solution as promising antitumor agents. J. Nanopart. Res. 17, 45 (2015). https://doi.org/10.1007/s11051-015-2867-y

    Article  ADS  Google Scholar 

  31. O.A. Kyzyma, T.O. Kyrey, M.V. Avdeev, M.V. Korobov, L.A. Bulavin, V.L. Aksenov, Non-reversible solvatochromism in N-methyl-2-pyrrolidone/toluene mixed solutions of fullerene C60. Chem. Phys. Lett. 556, 178–181 (2013). https://doi.org/10.1016/j.cplett.2012.11.040

    Article  ADS  Google Scholar 

  32. L.G.S. Brooker, Spectra of dye molecules. Absorbtion and resonance in dyes. Rev. Mod. Phys. 14, 275–293 (1942). https://doi.org/10.1103/revmodphys.14.275

    Article  ADS  Google Scholar 

  33. S. Huenig, H. Berneth, Two step reversible redox systems of the weitz type. Top. Curr. Chem. 92, 1–44 (1980). https://doi.org/10.1007/BFb0034356

    Article  Google Scholar 

  34. A.D. Kachkovskii, D.A. Yushchenko, G.A. Kachkovskii, Breaking of symmetry of solitons in the ion-radicals of α,ω-disubstituted polyenes. Teor. Éksp. Khim. 38(6), 341–346 (2002). https://doi.org/10.1023/a:102221960

  35. A.D. Kachkovskii, D.A. Yushchenko, G.A. Kachkovskii, D.M. Shut, Electronic properties of polymethine systems. 8. Geometry and electron structure of radicals. Dyes Pigments 66, 211–221 (2005). https://doi.org/10.1016/j.dyepig.2004.06.020

    Article  Google Scholar 

  36. H. Oeling, F. Baer, Radikaleaus Polymethin-Farbstoffen: III—Polymethinoxonole. Org. Magn. Reson. 8, 623–627 (1976). https://doi.org/10.1002/mrc.1270081207

    Article  Google Scholar 

  37. J.L. Bredas, G.B. Street, Polaron, bipolaron and solitons in conducting polymers. Acc. Chem. Res. 18, 309–315 (1985). https://doi.org/10.1021/ar00118a005

    Article  Google Scholar 

  38. A.O. Gerasov, I.H. Nayyar, A.E. Masunov, O.V. Przhonska, O.D. Kachkovsky, D.O. Melnyk, O.B. Ryabitsky, O.O. Viniychuk, Solitonic waves in polyenedications and principles of charge carrier localization in π-conjugated organic materials. Int. J. Quant. Chem. 112, 2659 (2012). https://doi.org/10.1002/qua.23281

    Article  Google Scholar 

  39. O.S. Nechyporenko, O.P. Melnyk, O.O. Viniychuk, T.M. Pinchuk-Rugal, V.A. Brusentsov, E.L. Pavlenko, Shape and location of multiple charge carriers in linear p-electron systems. Int. J. Quant. Chem. 114, 416–428 (2014). https://doi.org/10.1002/qua.24585

    Article  Google Scholar 

  40. A.E. Masunov, D. Anderson, A.Ya. Freidzon, A.A. Bagaturyants, Symmetry-breaking in cationic polymethine dyes: Part 2. Shape of electronic absorption bands explained by the thermal fluctuations of the solvent reaction field. J. Phys. Chem. A 119 (26), 6807–6815 (2015). https://doi.org/10.1021/acs.jpca.5b03877

    Article  ADS  Google Scholar 

  41. M. Ikai, S. Tokito, Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Appl. Phys. Lett. 79, 156–158 (2001). https://doi.org/10.1063/1.1385182

    Article  ADS  Google Scholar 

  42. F. Koehn, J. Hofkens, R. Gronheid, M. Van der Auweraer, F.C. De Schryver, Parameters influencing the on- and off-times in the fluorescence intensity traces of single cyanine dye molecules. J. Phys. Chem. A 106(19), 4808–4814 (2002). https://doi.org/10.1021/jp012959u

    Article  Google Scholar 

  43. P.F.H. Schwab, J.R. Smith, J. Michl, Synthesis and properties of molecular rods. 2. Zig-Zag rods. Chem. Rev. 105, 1197–279 (2005). https://doi.org/10.1021/cr040707u

    Article  Google Scholar 

  44. D. Valeur, Principles of fluorescent probe design for ion recognition, in Topics in Fluorescence Spectroscopy. Probe Design and Chemical Sensing, vol. 4, ed. by, J.R. Lacowicz (New York, Plenum, 1994), pp. 21–48

    Chapter  Google Scholar 

  45. G. Patonay, J. Salon, J. Sowell, L. Strekowski, Noncovalent labeling of bio-molecules with red and near-infrared dyes. Molecules 9, 40–49 (2004). https://doi.org/10.3390/90300040

    Article  Google Scholar 

  46. S.M. Borisov, O.S. Wolfbeis, Optical biosensors. Chem. Rev. 108, 423–461 (2008). https://doi.org/10.1021/cr068105t

    Article  Google Scholar 

  47. M.Y. Berezin, S. Achilefu, Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110(5), 2641–2684 (2010). https://doi.org/10.1021/cr900343z

    Article  Google Scholar 

  48. H. Kobayashi, M. Ogawa, R. Alford, P.L. Choyke, Ya. Urano, New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110, 2620–2640 (2010). https://doi.org/10.1021/cr900263j

    Article  Google Scholar 

  49. A. Cravino, P. Leriche, O. Aleveque, S. Roquet, J. Roncali, Light-emitting organic solar cells based on a 3D conjugated system with internal charge transfer. Adv. Mater. 18, 3033–3037 (2006). https://doi.org/10.1002/adma.200601230

    Article  Google Scholar 

  50. Yo. Ooyama, Yu. Harima, Designs and syntheses of organic dyes for dye-sensitized solar cells. Eur. J. Org. Chem. 18, 2903–2934 (2009). https://doi.org/10.1002/ejoc.200900236

    Article  Google Scholar 

  51. G. Chen, D. Yokoyama, H. Sasabe, Z. Hong, Y. Yang, J. Kido, Optical and electrical properties of a squaraine dye in photovoltaic cells. Appl. Phys. Lett. 101(8), 083904 (2012). https://doi.org/10.1063/1.4747623

    Article  ADS  Google Scholar 

  52. O.V. Przhonska, J. Lim, D.J. Hagan, E.W. Van Stryland, M.V. Bondar, Yu.L. Slominsky, Nonlinear light absorption of polymethine dyes in liquid and solid media. J. Opt. Soc. Am. B. 15(2), 802–809 (1998). https://doi.org/10.1364/josab.15.000802

    Article  ADS  Google Scholar 

  53. W. Zhou, S.M. Kuebler, K.L. Braun, T.Yu.J.K. Cammack, C.K. Ober, J.W. Perry, S.R. Marder, An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science 96(5570), 1106–1109 (2002). https://doi.org/10.1126/science.296.5570.1106

    Article  ADS  Google Scholar 

  54. S.R. Marder, Organic nonlinear optical materials: where we have been and where we are going. Chem. Commun. 2, 131–134 (2006). https://doi.org/10.1039/b512646k

    Article  Google Scholar 

  55. F. Terenziani, G. D’Avino, A. Painelli, Multichromophores for nonlinear optics: designing the material properties by electrostatic interactions. Chem. Phys. Phys. Chem. 8(17), 2433–2444 (2007). https://doi.org/10.1002/cphc.200700368

    Article  Google Scholar 

  56. M.G. Kuzyk, Using fundamental principles to understand and optimize nonlinear-optical materials. J. Mater. Chem. 19, 7444–7465 (2009). https://doi.org/10.1039/b907364g

    Article  Google Scholar 

  57. O.V. Przhonska, S. Webster, L.A. Padilha, H. Hu, A.D. Kachkovskii, D.J. Hagan, E.W. Van Stryland, Two-photon absorption in near-IR conjugated molecules: design strategy and structure-property relations, in Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Series Fluorescence (Springer, Berlin, Heidelberg, 2010), pp. 105–148. https://doi.org/10.1007/978-3-642-04702-2_4

    Google Scholar 

  58. J. Griffiths, Colour and Constitution of Organic Molecules (Academic Press, London, 1976), 281 pp. https://doi.org/10.1002/col.5080030213

    Article  Google Scholar 

  59. O. Ye, S.M. Shaydyuk, S.A. Levchenko, D. Kurhuzenkau, A.E. Anderson, O.D. Masunov, Yu.L. Kachkovsky, J.L. Slominsky, K.D. Bricks, M.V. Belfield, Bondar linear photophysics, two-photon absorption and femtosecond transient absorption spectroscopy of styryl dye bases. J. Lum. 183, 360–367 (2017). https://doi.org/10.1016/j.jlumin.2016.11.073

    Article  ADS  Google Scholar 

  60. K. Rurack, Flipping the light switch “ON”—the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition meta ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57(11), 2161–2195 (2001). https://doi.org/10.1016/S1386-1425(01)00492-9

    Article  ADS  Google Scholar 

  61. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd edn. (Wiley-VCH, Weinheim, 2003), 653 pp. ISBN 978–3-527-60567-5

    Google Scholar 

  62. F.L. Arbeloa, T.L. Arbeloa, I.L. Arbeloa, Electronic spectroscopy of pyrromethene. J. Photochem. Photobiol. A: Chem. 121, 177–182 (1999). https://doi.org/10.1016/S1010-6030(98)00453-5

    Article  Google Scholar 

  63. A. Toutchkine, W.-G. Han, M. Ullmann, T. Liu, D. Bashford, L. Noodleman, K.M. Hahn, Experimental and DFT studies: novel structural modifications greatly enhance the solvent sensitivity of live cell imaging dyes. J. Phys. Chem. A 111, 10849–10860 (2007). https://doi.org/10.1021/jp073197r

    Article  Google Scholar 

  64. M.A. Kudinova, N.A. Derevyanko, G.G. Dyadyusha, A.A. Ishchenko, A.I. Tolmachev, Pyrylocyanines. Symmetrical tetraphenyl-substituted pyrylo-2-cyanines. Chem. Het. Comp. 16(7), 691–695 (1980). https://doi.org/10.1007/bf00557737

    Article  Google Scholar 

  65. A.I. Tolmachev, N.A. Derevyanko, A.A. Ishchenko, Pyrylocyanines. 16. Tetraphenyl-substituted (pyrylo-2) (pyrylo-4) cyanines. Chem. Het. Comp. 18(9), 897–902 (1982). https://doi.org/10.1007/bf00513426

    Article  Google Scholar 

  66. K. Zyabrev, A. Doroshenko, E. Mikitenko, Yu. Slominskii, A. Tolmachev, Design, synthesis, and spectral luminescent properties of a novel polycarbocyanine series based on the 2,2-difluoro-1,3,2-dioxaborine nucleus. Eur. J. Org. Chem. 9, 1550–1558 (2008). https://doi.org/10.1002/ejoc.200701012

    Article  Google Scholar 

  67. P. Bouit, C. Aronica, L. Toupet, B.L. Guennic, C. Andraud, O. Maury, Continuous symmetry breaking induced by ion pairing effect in heptamethine cyanine dyes: beyond the cyanine limit. J. Am. Chem. Soc. 132(12), 4328–4335 (2010). https://doi.org/10.1021/ja9100886

    Article  Google Scholar 

  68. J. Fabian, Symmetry-lowering distortion of near-infrared polymethine dyes—a study by first-principles methods. J. Mol. Struct.: THEOCHEM 766, 49–60 (2006). https://doi.org/10.1016/j.theochem.2006.02.003

    Article  Google Scholar 

  69. F. Terenziani, A. Painelli, C. Katan, M. Charlot, M. Blanchard-Desce, Charge instability in quadrupolar chromophores: symmetry breaking and solvatochromism. J. Am. Chem. Soc. 128(49), 15742–15755 (2006). https://doi.org/10.1021/ja064521j

    Article  Google Scholar 

  70. S.V. Vasyluk, O.O. Viniychuk, Ye.M. Poronik, Yu.P. Kovtun, M.P. Shandura, V.M. Yashchuk, O.D. Kachkovsky, Breaking of symmetrical charge distribution in xanthylocyanine chromophores detecting by their absorption spectra. J. Mol. Struct. 990, 6–13 (2011). DOI: 10.1016/j.molstruc.2010.12.047

    Article  ADS  Google Scholar 

  71. A.D. Kachkovskii, A.I. Tolmachev, Yu.L. Slominskii, M.A. Kudinova, N.A. Derevyanko, O.O. Zhukova, Electronic properties of polymethine systems. 7. Soliton symmetry breaking and spectral features of dyes with a long chain. Dyes Pigments 64, 207–217 (2005). https://doi.org/10.1016/j.dyepig.2004.04.003

    Article  Google Scholar 

  72. R.S. Lepkowich, O.V. Przhonska, J.M. Hales, D.J. Hagan, E.W. Van Sryland, M.V. Bondar, Nature of electron transitions in thiacyanines with a long polymethine chain. Chem. Phys. 305, 259–270 (2004). https://doi.org/10.1016/j.chemphys.2004.06.063

    Article  ADS  Google Scholar 

  73. F. Terenziani, O.V. Przhonska, S. Webster, L.A. Padilha, Yu.L. Slominsky, I.G. Davydenko, A.O. Gerasov, YuP Kovtun, M.P. Shandura, A.D. Kachkovskii, J.D. Hagan, E.W. Van Stryland, A. Painelli, Essential-state model for polymethine dyes: symmetry breaking and optical spectra. J. Phys. Chem. Lett. 1, 1800–1804 (2010). https://doi.org/10.1021/jz100430x

    Article  Google Scholar 

  74. G.T. Dempsey, M. Bates, W.E. Kowtoniuk, D.R. Liu, R.Y. Tsien, X. Zwuang, Photoswitching mechanism of cyanine dyes. J. Am. Chem. Soc. 131(51), 18192–18193 (2009). https://doi.org/10.1021/ja904588g

    Article  Google Scholar 

  75. S.V. Vasyluk, V.M. Yashchuk, O.O. Viniychuk, Yu.P. Piryatinskii, M.M. Sevryukova, A.O. Gerasov, The investigation of relaxation paths in oxyborine anionic polymethine dyes detected by low-temperature time-resolved fluorescence. Mol. Cryst. Liq. Cryst. 535, 123–131 (2011). https://doi.org/10.1080/15421406.2011.537959

    Article  Google Scholar 

  76. P. Lutsyk, Yu. Piryatinski, O. Kachkovsky, A. Verbitsky, A. Rozhin, Unsymmetrical relaxation paths of the excited states in cyanine dyes detected by time-resolved fluorescence: polymethinic and polyenic forms. J. Phys. Chem. A 121(43), 8236–8246 (2017). https://doi.org/10.1021/acs.jpca.7b08680

    Article  Google Scholar 

  77. A.V. Stanova, A.B. Ryabitsky, V.M. Yashchuk, O.D. Kachkovsky, A.O. Gerasov, Ya.O. Prostota, O.V. Kropachev, Asymmetry in ground and excited states in styryls and methoxystyryls detected by NMR (13 C), absorption, fluorescence and fluorescence excitation spectroscopy. J. Mol. Struct. 988, 102–110 (2011). https://doi.org/10.1016/j.molstruc.2010.12.038

    Article  ADS  Google Scholar 

  78. M. Henary, A. Levitz, Synthesis and applications of unsymmetrical carbocyanine dyes. Dyes Pigments 99, 1107–1116 (2013). https://doi.org/10.1016/j.dyepig.2013.08.001

    Article  Google Scholar 

  79. PYu. Kobzar, E.L. Pavlenko, V.A. Brusentsov, O.P. Dmytrenko, N.P. Kulish, J.L. Bricks, Yu.L. Slominskii, V.V. Kurdyukov, O.I. Tolmachev, O.D. Kachkovsky, Comparative study of electronic structure cyanine bases versus parent cationic cyanines. J. Adv. Phys. 6, 334–345 (2017). https://doi.org/10.1166/jap.2017.1347

    Article  Google Scholar 

  80. E.L. Pavlenko, O.P. Dmytrenko, M.P. Kulish, V.V. Kurdyukov, O.I. Tolmachev, A.D. Kachkovsky, Spectral and quantum-chemical studies of the band shape in absorption of merocyanine derivatives of cyclohexadienone. J. Adv. Phys. 6(4), 514–523 (2017). https://doi.org/10.1166/jap.2017.1365

    Article  Google Scholar 

  81. A.D. Kachkovsky, N.V. Pilipchuk, V.V. Kurdyukov, A.I. Tolmachev, Electronic properties of polymethine systems. 10. Electron structure and absorption spectra of cyanine bases. Dyes Pigments 70, 212–219 (2006). https://doi.org/10.1016/j.dyepig.2004.12.011

    Article  Google Scholar 

  82. H. Mustroph, J. Mistol, B. Senns, D. Keil, M. Findeisen, L. Hennig, Relationship between the molecular structure of merocyanine dyes and the vibrational fine structure of their electronic absorption spectra. Angew. Chem. Int. Ed. 48, 8773–8775 (2009). https://doi.org/10.1002/anie.200902687

    Article  Google Scholar 

  83. A. Sanchez-Galvez, P. Hunt, M.A. Robb, M. Olivucci, T. Vreven, H.B. Schlegel, Ultrafast radiationless deactivation of organic dyes: evidence for a two-state two-mode pathway in polymethine cyanines. J. Am. Chem. Soc. 122(12), 2911–2924 (2000). https://doi.org/10.1021/ja993985x

    Article  Google Scholar 

  84. M.V. Bondar, N.A. Derevyanko, G.G. Dyadyusha, A.A. Ishchenko, Generation of light in the near infrared using solutions of asymmetric polymethine dyes. Sov. J. Quant. Electron. 14(3), 317–322 (1984). https://doi.org/10.1070/qe1984v014n03abeh004888

    Article  Google Scholar 

  85. Yu.L. Briks, Yu.A. Nesterenko, A.I. Tolmachev, A.D. Kachkovskii, Synthesis and spectral properties of vinylogs of heterylpolyenes based on pyran. Chem. Het. Comp. 26(2), 218–221 (1990). https://doi.org/10.1007/bf00499420

    Article  Google Scholar 

  86. O.M. Navozenko, A.P. Naumenko, V.M. Yashchuk, J.L. Bricks, Yu.L. Slominskii, A.B. Ryabitskii, O.D. Kachkovsky, Nature of the lowest electron transitions in styryl bases benzothiazole derivatives and analogues bearing para-methoxy and -trifluoromethyl substituents in phenylyne moiety. J. Mol. Struct. 1113, 32–41 (2016). https://doi.org/10.1016/j.molstruc.2016.01.062

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Figures 9.2, 9.4 and 9.3, Table 9.1 are reprinted from: [8, 81]; Table 9.6 is reprinted from A.D. Kachkovsky, N.V. Pilipchuk, V.V. Kurdyukov, A.I. Tolmachev, Yu.L. Slominskii, V.Ya. Gayvoronsky, E.V. Shepelyavyy, S.V. Yakunin, M.S. Brodyn, Spectral and non-linear optical properties of cyanine bases’ derivatives of benzo[c, d]indole, Dyes Pigments 74, 195–201 (2007) https://doi.org/10.1016/j.dyepig.2006.01.048, respectively with permission from Elsevier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Pavlenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pavlenko, O.L. et al. (2019). Electron Structure and Optical Properties of Conjugated Systems in Solutions. In: Bulavin, L., Xu, L. (eds) Modern Problems of the Physics of Liquid Systems. PLMMP 2018. Springer Proceedings in Physics, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-030-21755-6_9

Download citation

Publish with us

Policies and ethics