Skip to main content

Kinetics of Cluster Growth in Fullerene Solutions of Different Polarity

  • Conference paper
  • First Online:
Modern Problems of the Physics of Liquid Systems (PLMMP 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 223))

Included in the following conference series:

Abstract

Investigations of aggregation and associated kinetic effects, proceeding in various solutions of fullerenes C60 present a general interesting subject of research for the last 20–30 years. Since the discovery of fullerene solubility in liquids of different polarity, and also proposition of several methods for their dispersion in water media, these studies are considered particularly interesting from practical point of view. In this chapter we give a brief review of some experimental facts about kinetics of cluster growth in these systems, and present some theoretical models for their description. Most attention is given to such solvents as toluene, benzene and N-methylpyrrolidone (NMP). Some recent ultraviolet-visible (UV-Vis) spectroscopy studies of kinetics of fullerene dissolution, and C60-NMP complexes formation are presented. While in case of low-polar solvents one can easily extract the kinetic constants by applying simple dissolution equations, for the polar solutions the Bouguer-Lambert-Beer law is not applicable and we propose a model for accounting of the complex formation. This allows, again, to extract the dissolution rate constants, and also the complex formation rates. The kinetic theory of cluster formation and growth is based on the nucleation theory. We develop additional suppositions that are required to account for change of fullerene state after interaction with solvents. For obtaining the evolution of the cluster-size distribution function for any stage of cluster growth in the solution, a specific method is applied. Finally, we propose a general model for describing the critical character of fullerenes clusters decomposition in polar solvent on addition of water. This model is based on the specific dependence of molecules solubility in binary mixture on the amount of added water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162–163 (1985). https://doi.org/10.1038/318162a0

    Article  ADS  Google Scholar 

  2. S. Bosi, T. Da Ros, G. Spalluto, M. Prato, Fullerene derivatives: an attractive tool for biological applications. Eur. J. Med. Chem. 38, 913–923 (2003). https://doi.org/10.1016/j.ejmech.2003.09.005

    Article  Google Scholar 

  3. B.C. Thompson, J.M.J. Fréchet, Polymer-fullerene composite solar cells. Angew. Chemie Int. Ed. 47, 58–77 (2008). https://doi.org/10.1002/anie.200702506

    Article  Google Scholar 

  4. L.A. Bulavin, Y. Prylutskyy, O. Kyzyma, M. Evstigneev, U. Ritter, P. Scharff, Self-organization of pristine C60 fullerene and its complexes with chemotherapy drugs in aqueous solution as promising anticancer agents (2018), pp. 3–22. https://doi.org/10.1007/978-3-319-61109-9_1

    Google Scholar 

  5. R. Bakry, R.M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C.W. Huck, G.K. Bonn, Medicinal applications of fullerenes. Int. J. Nanomed. 2, 639–649 (2007). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2676811&tool=pmcentrez&rendertype=abstract

  6. M.V. Avdeev, V.L. Aksenov, T.V. Tropin, Models of cluster formation in solutions of fullerenes. Russ. J. Phys. Chem. A 84, 1273–1283 (2010). https://doi.org/10.1134/S0036024410080017

    Article  Google Scholar 

  7. V.N. Bezmel’nitsyn, A.V. Eletskii, M.V. Okun’, Fullerenes in solutions, Uspekhi Fiz. Nauk. 168, 1195 (1998). https://doi.org/10.3367/ufnr.0168.199811b.1195

    Article  Google Scholar 

  8. Y. Marcus, A.L. Smith, M.V. Korobov, A.L. Mirakyan, N.V. Avramenko, E.B. Stukalin, Solubility of C 60 fullerene. J. Phys. Chem. B. 105, 2499–2506 (2001). https://doi.org/10.1021/jp0023720

    Article  Google Scholar 

  9. G. Andrievsky, V. Klochkov, E. Karyakina, N. Mchedlov-Petrossyan, Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy. Chem. Phys. Lett. 300, 392–396 (1999). https://doi.org/10.1016/S0009-2614(98)01393-1

    Article  ADS  Google Scholar 

  10. J.A. Brant, J. Labille, J.-Y. Bottero, M.R. Wiesner, Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir 22, 3878–3885 (2006). https://doi.org/10.1021/la053293o

    Article  Google Scholar 

  11. S. Andreev, D. Purgina, E. Bashkatova, A. Garshev, A. Maerle, I. Andreev, N. Osipova, N. Shershakova, M. Khaitov, Study of fullerene aqueous dispersion prepared by novel dialysis method: simple way to fullerene aqueous solution, fullerenes. Nanotub. Carbon Nanostruct. 23, 792–800 (2015). https://doi.org/10.1080/1536383X.2014.998758

    Article  ADS  Google Scholar 

  12. M.E. Hilburn, B.S. Murdianti, R.D. Maples, J.S. Williams, J.T. Damron, S.I. Kuriyavar, K.D. Ausman, Synthesizing aqueous fullerene colloidal suspensions by new solvent-exchange methods. Colloids Surf A Physicochem. Eng. Asp. 401, 48–53 (2012). https://doi.org/10.1016/j.colsurfa.2012.03.010

    Article  Google Scholar 

  13. Y.I. Prylutskyy, V.I. Petrenko, O.I. Ivankov, O.A. Kyzyma, L.A. Bulavin, O.O. Litsis, M.P. Evstigneev, V.V Cherepanov, A G. Naumovets, U. Ritter, On the origin of C60 fullerene solubility in aqueous solution. Langmuir 30, 3967–3970 (2014). https://doi.org/10.1021/la404976k

    Article  Google Scholar 

  14. P. Scharff, K. Risch, L. Carta-Abelmann, I.M. Dmytruk, M.M. Bilyi, O.A. Golub, A.V. Khavryuchenko, E.V. Buzaneva, V.L. Aksenov, M.V. Avdeev, Y.I. Prylutskyy, S.S. Durov, Structure of C60 fullerene in water: spectroscopic data. Carbon N. Y. 42, 1203–1206 (2004). https://doi.org/10.1016/j.carbon.2003.12.053

    Article  Google Scholar 

  15. M.V. Avdeev, A.A. Khokhryakov, T.V. Tropin, G.V. Andrievsky, V.K. Klochkov, L.I. Derevyanchenko, L. Rosta, V.M. Garamus, V.B. Priezzhev, M.V. Korobov, V.L. Aksenov, Structural features of molecular-colloidal solutions of C60 fullerenes in water by small-angle neutron scattering. Langmuir 20, 4363–4368 (2004). http://www.ncbi.nlm.nih.gov/pubmed/15969139

    Article  Google Scholar 

  16. A.A. Khokhryakov, M.V. Avdeev, T.V. Tropin, G.V. Andrievskiǐ, L.A. Bulavin, Y.A. Osip’yan, V.L. Aksenov, Small-angle neutron scattering by colloidal solutions of fullerene C60 in water, Crystallogr. Reports 49, S142–S147 (2004)

    Google Scholar 

  17. A.O. Khokhryakov, M.V. Avdeev, V.L. Aksenov, L.A. Bulavin, Structural organization of colloidal solution of fullerene C60 in water by data of small angle neutron scattering. J. Mol. Liq. 127, 73–78 (2006). https://doi.org/10.1016/j.molliq.2006.03.019

    Article  Google Scholar 

  18. M.V. Avdeev, T.V. Tropin, I.A. Bodnarchuk, S.P. Yaradaikin, L. Rosta, V.L. Aksenov, L.A. Bulavin, On structural features of fullerene C60 dissolved in carbon disulfide: complementary study by small-angle neutron scattering and molecular dynamic simulations. J. Chem. Phys. 132, 164515 (2010). https://doi.org/10.1063/1.3415500

    Article  ADS  Google Scholar 

  19. R. Dattani, K.F. Gibson, S. Few, A.J. Borg, P.A. DiMaggio, J. Nelson, S.G. Kazarian, J.T. Cabral, Fullerene oxidation and clustering in solution induced by light. J. Colloid Interface Sci. 446, 24–30 (2015). https://doi.org/10.1016/j.jcis.2015.01.005

    Article  ADS  Google Scholar 

  20. T. Tomiyama, S. Uchiyama, H. Shinohara, Solubility and partial specific volumes of C60 and C70. Chem. Phys. Lett. 264, 143–148 (1997). https://doi.org/10.1016/S0009-2614(96)01290-0

    Article  ADS  Google Scholar 

  21. Q. Ying, J. Marecek, B. Chu, Slow aggregation of buckminsterfullerene (C60) in benzene solution. Chem. Phys. Lett. 219, 214–218 (1994). https://doi.org/10.1016/0009-2614(94)87047-0

    Article  ADS  Google Scholar 

  22. N.O. Mchedlov-Petrossyan, Fullerenes in molecular liquids. Solutions in “good” solvents: another view, J. Mol. Liq. 161, 1–12 (2011). https://doi.org/10.1016/j.molliq.2011.04.001

    Article  Google Scholar 

  23. G. Török, V.T. Lebedev, L. Cser, Small-angle neutron-scattering study of anomalous C60 clusterization in toluene. Phys. Solid State 44, 572–573 (2002). https://doi.org/10.1134/1.1462711

    Article  ADS  Google Scholar 

  24. S. Nath, H. Pal, A.V. Sapre, Effect of solvent polarity on the aggregation of C60. Chem. Phys. Lett. 327, 143–148 (2000). https://doi.org/10.1016/S0009-2614(00)00863-0

    Article  ADS  Google Scholar 

  25. S. Nath, H. Pal, A.V. Sapre, Effect of solvent polarity on the aggregation of fullerenes: a comparison between C60 and C70. Chem. Phys. Lett. 360, 422–428 (2002). https://doi.org/10.1016/S0009-2614(02)00780-7

    Article  ADS  Google Scholar 

  26. O.A. Kyzyma, M.V. Korobov, M.V. Avdeev, V.M. Garamus, V.I. Petrenko, V.L. Aksenov, L.A. Bulavin, Solvatochromism and fullerene cluster formation in C60/N-methyl-2-pyrrolidone. Fuller. Nanotub. Carbon Nanostruct. 18, 458–461 (2010). https://doi.org/10.1080/1536383x.2010.487778

    Article  ADS  Google Scholar 

  27. N.P. Yevlampieva, Y.F. Biryulin, E.Y. Melenevskaja, V.N. Zgonnik, E.I. Rjumtsev, Aggregation of fullerene C60 in N-methylpyrrolidone. Colloids Surf. A Physicochem. Eng. Asp. 209, 167–171 (2002). https://doi.org/10.1016/S0927-7757(02)00177-2

    Article  Google Scholar 

  28. R.G. Alargova, S. Deguchi, K. Tsujii, Stable colloidal dispersions of fullerenes in polar organic solvents. J. Am. Chem. Soc. 123, 10460–10467 (2001). http://www.ncbi.nlm.nih.gov/pubmed/11673976

    Article  Google Scholar 

  29. N.O. Mchedlov-Petrossyan, N.N. Kamneva, Y.T.M. Al-Shuuchi, A.I. Marynin, O.S. Zozulia, Formation and ageing of the fullerene C60 colloids in polar organic solvents. J. Mol. Liq. 235, 98–103 (2017). https://doi.org/10.1016/j.molliq.2016.10.113

    Article  Google Scholar 

  30. T.V. Tropin, N. Jargalan, M.V. Avdeev, O.A. Kyzyma, R.A. Eremin, D. Sangaa, V.L. Aksenov, Kinetics of cluster growth in polar solutions of fullerene: experimental and theoretical study of C60/NMP solution. J. Mol. Liq. 175, 4–11 (2012). https://doi.org/10.1016/j.molliq.2012.08.003

    Article  Google Scholar 

  31. N. Jargalan, T.V. Tropin, M.V. Avdeev, V.L. Aksenov, Investigation and modeling of evolution of C60/NMP solution UV-Vis spectra. Nanosyst. Phys. Chem. Math. 7, 99–103 (2016). https://doi.org/10.17586/2220-8054-2016-7-1-99-103

  32. M. Baibarac, L. Mihut, N. Preda, I. Baltog, J.Y. Mevellec, S. Lefrant, Surface-enhanced Raman scattering studies on C60 fullerene self-assemblies. Carbon N. Y. 43, 1–9 (2005). https://doi.org/10.1016/j.carbon.2004.08.020

    Article  Google Scholar 

  33. A. Mrzel, A. Mertelj, A. Omerzu, M. Čopič, D. Mihailovic, Investigation of encapsulation and solvatochromism of fullerenes in binary solvent mixtures. J. Phys. Chem. B. 103, 11256–11260 (1999). https://doi.org/10.1021/jp992637e

    Article  Google Scholar 

  34. V.L. Aksenov, Study of fullerene aggregates in pyridine/water solutions, in AIP Conference Proceedings, AIP, pp. 66–69 (2001). https://doi.org/10.1063/1.1426823

  35. V.L.L. Aksenov, M.V. Avdeev, T.V. Tropin, V.B. Priezzhev, J.W.P. Schmelzer, Model description of aggregation in fullerene solutions, in AIP Conference Proceedings, AIP, pp. 37–40 (2005). https://doi.org/10.1063/1.2103816

  36. V.L. Aksenov, T.V. Tropin, M.V. Avdeev, V.B. Priezzhev, J.W.P. Schmelzer, Kinetics of cluster growth in fullerene molecular solutions. Phys. Part. Nucl. 36 (2005)

    Google Scholar 

  37. V.V. Slezov, J.W.P. Schmelzer, Comments on nucleation theory. J. Phys. Chem. Solids 59, 1507–1519 (1998). https://doi.org/10.1016/S0022-3697(98)00079-1

    Article  ADS  Google Scholar 

  38. V.V. Slezov, J. Schmelzer, Kinetics of formation and growth of a new phase with a definite stoichiometric composition. J. Phys. Chem. Solids 55, 243–251 (1994). https://doi.org/10.1016/0022-3697(94)90139-2

    Article  ADS  Google Scholar 

  39. V.V. Slezov, Y.J. Tkatch, J. Schmelzer, The kinetics of decomposition of solid solutions. J. Mater. Sci. 32, 3739–3747 (1997)

    Article  ADS  Google Scholar 

  40. R. Becker, W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Phys. 416, 719–752 (1935). https://doi.org/10.1002/andp.19354160806

    Article  MATH  Google Scholar 

  41. N.O. Mchedlov-Petrossyan, N.N. Kamneva, Y.T.M. Al-Shuuchi, A.I. Marynin, S.V. Shekhovtsov, The peculiar behavior of fullerene C60 in mixtures of ‘good’ and polar solvents: colloidal particles in the toluene–methanol mixtures and some other systems. Colloids Surf. A Physicochem. Eng. Asp. 509, 631–637 (2016). https://doi.org/10.1016/j.colsurfa.2016.09.045

    Article  Google Scholar 

  42. M. Alfè, B. Apicella, R. Barbella, A. Bruno, A. Ciajolo, Aggregation and interactions of C60 and C70 fullerenes in neat N-methylpyrrolidinone and in N-methylpyrrolidinone/toluene mixtures. Chem. Phys. Lett. 405, 193–197 (2005). https://doi.org/10.1016/j.cplett.2005.02.030

    Article  ADS  Google Scholar 

  43. M. Alfè, R. Barbella, A. Bruno, P. Minutolo, A. Ciajolo, Solution behaviour of C60 fullerene in N-Methylpyrrolidinone/toluene mixtures. Carbon N. Y. 43, 665–667 (2005). https://doi.org/10.1016/j.carbon.2004.10.017

    Article  Google Scholar 

  44. V.L. Aksenov, M.V. Avdeev, T.V. Tropin, M.V. Korobov, N.V. Kozhemyakina, N.V. Avramenko, L. Rosta, Formation of fullerene clusters in the system C60/NMP/water by SANS. Phys. B Condens. Matter. 385–386, 795–797 (2006). https://doi.org/10.1016/j.physb.2006.06.086

    Article  ADS  Google Scholar 

  45. O.A. Kyzyma, M.V. Korobov, M.V. Avdeev, V.M. Garamus, S.V. Snegir, V.I. Petrenko, V.L. Aksenov, L.A. Bulavin, Aggregate development in C60/N-methyl-2-pyrrolidone solution and its mixture with water as revealed by extraction and mass spectroscopy. Chem. Phys. Lett. 493, 103–106 (2010). https://doi.org/10.1016/j.cplett.2010.04.076

    Article  ADS  Google Scholar 

  46. T.V Tropin, T.O. Kyrey, O.A. Kyzyma, A.V. Feoktistov, M.V. Avdeev, L.A. Bulavin, L. Rosta, V.L. Aksenov, Experimental investigation of C60/NMP/toluene solutions by UV-Vis spectroscopy and small angle neutron scattering. J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 7, 5–8 (2013). https://doi.org/10.1134/s1027451013010199

    Article  Google Scholar 

  47. O.A. Kyzyma, T.O. Kyrey, M.V. Avdeev, M.V. Korobov, L.A. Bulavin, V.L. Aksenov, Non-reversible solvatochromism in N-methyl-2-pyrrolidone/toluene mixed solutions of fullerene C60. Chem. Phys. Lett. 556, 178–181 (2013). https://doi.org/10.1016/j.cplett.2012.11.040

    Article  ADS  Google Scholar 

  48. A.A. Kaznacheevskaya, O.A. Kizima, L.A. Bulavin, A. V. Tomchuk, V.M. Garamus, M.V. Avdeev, Reorganization of the cluster state in a C60/N-Methylpyrrolidone/water solution: Comparative characteristics of dynamic light scattering and small-angle neutron scattering data. J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 7, 1133–1136 (2013). https://doi.org/10.1134/s102745101306030x

    Article  Google Scholar 

  49. A.D. Bokare, A. Patnaik, Evidence for C60 aggregation from solvent effects in [Ps–C60] molecular complex formation. Carbon N. Y. 41, 2643–2651 (2003). https://doi.org/10.1016/S0008-6223(03)00384-1

    Article  Google Scholar 

  50. T.O. Kyrey, O.A. Kyzyma, M.V. Avdeev, T.V. Tropin, M.V. Korobov, V.L. Aksenov, L.A. Bulavin, Absorption characteristics of fullerene C60 in N-Methyl-2-Pirrolidone/Toluene mixture, fullerenes. Nanotub. Carbon Nanostruct. 20, 341–344 (2012). https://doi.org/10.1080/1536383X.2012.655173

    Article  ADS  Google Scholar 

  51. G.V. Andrievsky, V.K. Klochkov, A.B. Bordyuh, G.I. Dovbeshko, Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV–Vis spectroscopy. Chem. Phys. Lett. 364, 8–17 (2002). https://doi.org/10.1016/S0009-2614(02)01305-2

    Article  ADS  Google Scholar 

  52. N. Jargalan, T.V.V. Tropin, M.V.V. Avdeev, V.L.L. Aksenov, Investigation of the dissolution kinetics of fullerene C60 in solvents with different polarities by UV-Vis spectroscopy, J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 9, 12–16 (2015). https://doi.org/10.1134/s102745101501019x

    Article  Google Scholar 

  53. R.S. Ruoff, D.S. Tse, R. Malhotra, D.C. Lorents, Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 97, 3379–3383 (1993). https://doi.org/10.1021/j100115a049

    Article  Google Scholar 

  54. A.A.A.A. Noyes, W.R.W.I. Whitney, The rate of solution of solid substances in their own solutions, J. Am. Chem. Soc. 19, 930–934 (1897). https://doi.org/10.1021/ja02086a003

    Article  Google Scholar 

  55. A. Naumenko, M. Biliy, V. Gubanov, A. Navozenko, Spectroscopic studies of fullerene clusters in N-methyl-2-pyrrolidone, J. Mol. Liq. 1–4 (2017). https://doi.org/10.1016/j.molliq.2017.01.035

    Article  Google Scholar 

  56. O.B. Karpenko, V.V. Trachevskij, O.V. Filonenko, V.V. Lobanov, M.V. Avdeev, T.V. Tropin, O.A. Kyzyma, S.V. Snegir, Nmr study of non-equilibrium state of fullerene C60 in N-methyl-2-pyrrolidone. Ukr. J. Phys. 57, 860–863 (2012)

    Google Scholar 

  57. J.W.P. Schmelzer, G. Ropke, V.B. Priezzhev, Nucleation Theory and Applications, in ed. by J.W.P. Schmelzer, G. Ropke, V.B. Priezzhev (JINR Publishing House, Dubna, 1999), pp. 1–525

    Google Scholar 

  58. V.V. Slezov, V.V. Sagalovich, Diffusive decomposition of solid solutions. Sov. Phys. Uspekhi. 30, 23–45 (1987). https://doi.org/10.1070/PU1987v030n01ABEH002792

    Article  ADS  Google Scholar 

  59. V.L.L. Aksenov, T.V.V. Tropin, M.V.V. Avdeev, V.B.B. Priezzhev, J.W.P.W.P. Schmelzer, Kinetics of cluster growth in fullerene molecular solutions. Phys. Part. Nucl. 36, S52–S61 (2005)

    Google Scholar 

  60. T.V. Tropin, V.B. Priezzhev, M.V. Avdeev, J.W.P. Schmelzer, V.L. Aksenov, Fullerene cluster formation in carbon disulfide and toluene, fullerenes. Nanotub. Carbon Nanostruct. 14, 481–488 (2006). https://doi.org/10.1080/15363830600666365

    Article  ADS  Google Scholar 

  61. V.V. Slezov, J. Schmelzer, J. Möller, Ostwald ripening in porous materials. J. Cryst. Growth 132, 419–426 (1993). https://doi.org/10.1016/0022-0248(93)90067-7

    Article  ADS  Google Scholar 

  62. J. Schmelzer, J. Möller, V.V. Slezov, Ostwald ripening in porous materials: The case of arbitrary pore size distributions. J. Phys. Chem. Solids 56, 1013–1022 (1995). https://doi.org/10.1016/0022-3697(95)00021-6

    Article  ADS  Google Scholar 

  63. I.S. Gutzow, J.W.P. Schmelzer, The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization (1995)

    Chapter  Google Scholar 

  64. F.M. Kuni, A.I. Rusanov, A.K. Shchekin, A.P. Grinin, Kinetics of aggregation in micellar solutions. Russ. J. Phys. Chem. A 79, 833–853 (2005)

    Google Scholar 

  65. A.P. Grinin, D.S. Grebenkov, Study of relaxation in micellar solution by the numerical experiment. Colloid J. 65, 552–561 (2003). https://doi.org/10.1023/A:1026111504241

    Article  Google Scholar 

  66. T.V. Tropin, M.V. Avdeev, O.A. Kyzyma, V.L. Aksenov, Nucleation theory models for describing kinetics of cluster growth in C60/NMP solutions. Phys. Status Solidi. 247, 3022–3025 (2010). https://doi.org/10.1002/pssb.201000119

    Article  Google Scholar 

  67. T.V. Tropin, M.V. Avdeev, O.A. Kyzyma, R.A. Yeremin, N. Jargalan, M.V. Korobov, V.L. Aksenov, Towards description of kinetics of dissolution and cluster growth in C60/NMP solutions. Phys. Status Solidi. 248, 2728–2731 (2011). https://doi.org/10.1002/pssb.201100099

    Article  Google Scholar 

  68. T.V. Tropin, M.V. Avdeev, V.L. Aksenov, Modeling of the evolution of the cluster-size distribution functions in polar fullerene C60 solutions, J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 3 (2019). https://doi.org/10.1134/S102745101901035X

    Article  Google Scholar 

  69. I.M. Lifshits, V.V. Slezov, Kinetics of the diffusion decomposition of supersaturated solid solutions. Zhurnal Eksp. i Teor. Fiz. 35, 479–492 (1958)

    Google Scholar 

  70. A.L. Smith, E. Walter, M.V. Korobov, O.L. Gurvich, Some enthalpies of solution of C60 and C70. Thermodynamics of the temperature dependence of fullerene solubility. J. Phys. Chem. 100, 6775–6780 (1996). https://doi.org/10.1021/jp952873z

    Article  Google Scholar 

  71. T.V. Tropin, N. Jargalan, M. V. Avdeev, O.A. Kyzyma, D. Sangaa, V.L. Aksenov, Calculation of the cluster size distribution functions and small-angle neutron scattering data for C60/N-methylpyrrolidone. Phys. Solid State. 56, 148–151 (2014). https://doi.org/10.1134/s1063783414010363

    Article  ADS  Google Scholar 

  72. R. Pascova, I. Gutzow, J. Schmelzer, A model investigation of the process of phase formation in photochromic glasses. J. Mater. Sci. 25, 921–931 (1990). https://doi.org/10.1007/BF03372180

    Article  ADS  Google Scholar 

  73. V.L. Aksenov, T.V. Tropin, O.A. Kyzyma, M.V. Avdeev, M.V. Korobov, L. Rosta, Formation of C60 fullerene clusters in nitrogen-containing solvents. Phys. Solid State 52, 1059–1062 (2010). https://doi.org/10.1134/S1063783410050367

    Article  ADS  Google Scholar 

  74. T.V. Tropin, V.L. Aksenov, Theoretical investigation of the cluster size decrease effect on dilution of a solution by water. J. Exp. Theor. Phys. 128, 274–280 (2019). https://doi.org/10.1134/S1063776119010187

    Article  ADS  Google Scholar 

  75. P. Jain, S.H. Yalkowsky, Solubilization of poorly soluble compounds using 2-pyrrolidone. Int. J. Pharm. 342, 1–5 (2007). https://doi.org/10.1016/j.ijpharm.2007.03.056

    Article  Google Scholar 

  76. R. Sanghvi, R. Narazaki, S.G. Machatha, S.H. Yalkowsky, Solubility improvement of drugs using N-methyl pyrrolidone. Am. Assos. Pharm. Sci. 9, 366–376 (2008). https://doi.org/10.1208/s12249-008-9050-z

    Article  Google Scholar 

  77. V.L. Aksenov, M.V. Avdeev, T.V. Tropin, V.B. Priezzhev, J.W.P. Schmelzer, Model description of aggregation in fullerene solutions, in AIP Conference Proceedings, AIP, pp. 37–40 (2005). https://doi.org/10.1063/1.2103816

  78. J. Bartels, U. Lembke, R. Pascova, J. Schmelzer, I. Gutzow, Evolution of cluster size distribution in nucleation and growth processes. J. Non. Cryst. Solids 136, 181–197 (1991). https://doi.org/10.1016/0022-3093(91)90489-S

    Article  ADS  Google Scholar 

  79. O.A. Kyzyma, L.A. Bulavin, V.L. Aksenov, T.V. Tropin, M.V. Avdeev, M.V. Korobov, S.V. Snegir, L. Rosta, Aggregation in C 60/NMP, C 60/NMP/water and C 60/NMP/toluene mixtures, fullerenes. Nanotub. Carbon Nanostruc. 16, 610–615 (2008). https://doi.org/10.1080/15363830802312982

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by RBFR (project no. 17-52-44024 Mong_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Tropin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tropin, T.V., Avdeev, M.V., Jargalan, N., Kuzmenko, M.O., Aksenov, V.L. (2019). Kinetics of Cluster Growth in Fullerene Solutions of Different Polarity. In: Bulavin, L., Xu, L. (eds) Modern Problems of the Physics of Liquid Systems. PLMMP 2018. Springer Proceedings in Physics, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-030-21755-6_10

Download citation

Publish with us

Policies and ethics