Skip to main content

Benign Prostatic Hyperplasia and Prostate Cancer Laser Ablation

  • Chapter
  • First Online:
Image-guided Laser Ablation

Abstract

Treatment of symptoms of the lower urinary tract due to benign prostatic obstruction (LUTS/BPH) in men with transperineal laser ablation (TPLA) may offer advantages in terms of functional outcome and safety compared to current standard therapies. Because the technique is relatively new, the indications and outcomes for this treatment are being investigated. However, it is already applied outside of clinical trials. The results of the feasibility study are excellent in terms of both clinical and safety improvements. No significant procedural, periprocedural, and distant complications have been reported so far. In particular, severe complications such as incontinence, erectile dysfunction, retrograde ejaculation, and urethral stenosis have not yet been reported. It is necessary to acquire clinical information from these treatments to plan future research.

Prostate cancer (PCa) is the second cause of cancer-related deaths for men. The standard surgical treatment is radical prostatectomy. Possible side effects of this treatment are incontinence and erectile dysfunction. These side effects are especially undesired in patients with only a small focus of PCa. A focal treatment without these side effects is desirable and must be researched. Focal laser ablation (FLA) is an investigated technique for local treatment. So far the single fiber setup of most systems requires fiber replacement. This leads to longer treatment duration and thus higher costs. The EchoLaser system is a laser ablation system with four laser sources. This provides a larger treatment area, without the need for fiber replacement. This makes the system ideal for FLA of prostate cancer, especially since it can be applied under local anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roehrborn CG. Current medical therapies for men with lower urinary tract symptoms and benign prostatic hyperplasia: achievements and limitations. Rev Urol. 2008;10(1):14–25.

    PubMed  PubMed Central  Google Scholar 

  2. Roehrborn CG. Combination medical therapy for lower urinary tract symptoms and benign prostatic hyperplasia. Rev Urol. 2005;7(Suppl 8):S43–51.

    PubMed  PubMed Central  Google Scholar 

  3. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Parsons JK. Benign prostatic hyperplasia and male lower urinary tract symptoms: epidemiology and risk factors. Curr Bladder Dysfunct Rep. 2010;5(4):212–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rosen RC, Wei JT, Althof SE, Seftel AD, Miner M, Perelman MA, et al. Association of sexual dysfunction with lower urinary tract symptoms of BPH and BPH medical therapies: results from the BPH Registry. Urology. 2009;73(3):562–6.

    Article  PubMed  Google Scholar 

  6. Oelke M, Bachmann A, Descazeaud A, Emberton M, Gravas S, Michel MC, et al. EAU guidelines on the treatment and follow-up of non-neurogenic male lower urinary tract symptoms including benign prostatic obstruction. Eur Urol. 2013;64(1):118–40.

    Article  PubMed  Google Scholar 

  7. Rassweiler J, Teber D, Kuntz R, Hofmann R. Complications of transurethral resection of the prostate (TURP)-incidence, management, and prevention. Eur Urol. 2006;50(5):969–79; discussion 80.

    Article  PubMed  Google Scholar 

  8. Ow D, Papa N, Perera M, Liodakis P, Sengupta S, Clarke S, et al. Trends in the surgical treatment of benign prostatic hyperplasia in a tertiary hospital. ANZ J Surg. 2018;88(1–2):95–9.

    Article  PubMed  Google Scholar 

  9. Cornu JN, Ahyai S, Bachmann A, de la Rosette J, Gilling P, Gratzke C, et al. A Systematic review and meta-analysis of functional outcomes and complications following transurethral procedures for lower urinary tract symptoms resulting from benign prostatic obstruction: an update. Eur Urol. 2015;67(6):1066–96.

    Article  PubMed  Google Scholar 

  10. Robert G, Cornu JN, Fourmarier M, Saussine C, Descazeaud A, Azzouzi AR, et al. Multicentre prospective evaluation of the learning curve of holmium laser enucleation of the prostate (HoLEP). BJU Int. 2016;117(3):495–9.

    Article  PubMed  Google Scholar 

  11. Yu X, Elliott SP, Wilt TJ, McBean AM. Practice patterns in benign prostatic hyperplasia surgical therapy: the dramatic increase in minimally invasive technologies. J Urol. 2008;180(1):241–5; discussion 5.

    Article  PubMed  Google Scholar 

  12. Benoist N, Bigot P, Colombel P, Amie F, Haringanji C, Chautard D, et al. Tuna: clinical retrospective study addressing mid-term outcomes. Prog Urol. 2009;19(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  13. Niţă G, Persu C. Radiofrequency ablation in the treatment of benign prostatic hyperplasia (TUNA). In: Handbook E, editor. Endoscopic diagnosis and treatment in prostate pathology. Cambridge, MA: Academic Press; 2016. p. 149–54.

    Chapter  Google Scholar 

  14. Malaeb BS, Yu X, McBean AM, Elliott SP. National trends in surgical therapy for benign prostatic hyperplasia in the United States (2000–2008). Urology. 2012;79(5):1111–6.

    Article  PubMed  Google Scholar 

  15. Perera M, Roberts MJ, Doi SA, Bolton D. Prostatic urethral lift improves urinary symptoms and flow while preserving sexual function for men with benign prostatic hyperplasia: a systematic review and meta-analysis. Eur Urol. 2015;67(4):704–13.

    Article  PubMed  Google Scholar 

  16. Roehrborn CG, Rukstalis DB, Barkin J, Gange SN, Shore ND, Giddens JL, et al. Three year results of the prostatic urethral L.I.F.T. study. Can J Urol. 2015;22(3):7772–82.

    PubMed  Google Scholar 

  17. Yildiz G, Bahouth Z, Halachmi S, Meyer G, Nativ O, Moskovitz B. Allium TPS-a new prostatic stent for the treatment of patients with benign prostatic obstruction: the first report. J Endourol. 2016;30(3):319–22.

    Article  PubMed  Google Scholar 

  18. El-Husseiny T, Buchholz N. Transurethral ethanol ablation of the prostate for symptomatic benign prostatic hyperplasia: long-term follow-up. J Endourol. 2011;25(3):477–80.

    Article  PubMed  Google Scholar 

  19. Shore N, Cowan B. The potential for NX-1207 in benign prostatic hyperplasia: an update for clinicians. Ther Adv Chronic Dis. 2011;2(6):377–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elhilali MM, Pommerville P, Yocum RC, Merchant R, Roehrborn CG, Denmeade SR. Prospective, randomized, double-blind, vehicle controlled, multicenter phase IIb clinical trial of the pore forming protein PRX302 for targeted treatment of symptomatic benign prostatic hyperplasia. J Urol. 2013;189(4):1421–6.

    Article  CAS  PubMed  Google Scholar 

  21. Marberger M, Chartier-Kastler E, Egerdie B, Lee KS, Grosse J, Bugarin D, et al. A randomized double-blind placebo-controlled phase 2 dose-ranging study of onabotulinumtoxinA in men with benign prostatic hyperplasia. Eur Urol. 2013;63(3):496–503.

    Article  CAS  PubMed  Google Scholar 

  22. McVary KT, Roehrborn CG. Three-year outcomes of the prospective, randomized controlled rezum system study: convective radiofrequency thermal therapy for treatment of lower urinary tract symptoms due to benign prostatic hyperplasia. Urology. 2018;111:1–9.

    Article  PubMed  Google Scholar 

  23. Schreuder SM, Scholtens AE, Reekers JA, Bipat S. The role of prostatic arterial embolization in patients with benign prostatic hyperplasia: a systematic review. Cardiovasc Intervent Radiol. 2014;37(5):1198–219.

    Article  CAS  PubMed  Google Scholar 

  24. Pisco J, Bilhim T, Costa NV, Ribeiro MP, Fernandes L, Oliveira AG. Safety and efficacy of prostatic artery chemoembolization for prostate cancer-initial experience. J Vasc Interv Radiol. 2018;29(3):298–305.

    Article  PubMed  Google Scholar 

  25. Yassaie O, Silverman JA, Gilling PJ. Aquablation of the prostate for symptomatic benign prostatic hyperplasia: early results. Curr Urol Rep. 2017;18(12):91.

    Article  PubMed  Google Scholar 

  26. Gilling P, Reuther R, Kahokehr A, Fraundorfer M. Aquablation—image-guided robot-assisted waterjet ablation of the prostate: initial clinical experience. BJU Int. 2016;117(6):923–9.

    Article  CAS  PubMed  Google Scholar 

  27. Roberts WW. Development and translation of histotripsy: current status and future directions. Curr Opin Urol. 2014;24(1):104–10.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sander S, Beisland HO. Laser in the treatment of localized prostatic carcinoma. J Urol. 1984;132(2):280–1.

    Article  CAS  PubMed  Google Scholar 

  29. Shanberg AM, Tansey LA, Baghdassarian R. The use of the neodymium YAG laser in prostatectomy. J Urol. 1985:133.

    Google Scholar 

  30. Kandel LB, Harrison LH, McCullogh DL, et al. Transurethral laser prostatectomy: creation of a technique for using the neodymium: yttrium aluminium garnet laser in the canine model. J Urol. 1986:135.

    Google Scholar 

  31. Roth RA, Aretz HT. Transurethral ultrasound-guided laser-induced prostatectomy (TULIP procedure): a canine prostate feasibility study. J Urol. 1991;146(4):1128–35.

    Article  CAS  PubMed  Google Scholar 

  32. Roth RA, Aretz TH, Lage AL. TULIP Transurethral laser induced prostatectomy under ultrasound guidance. J Urol. 1991:146, 1128–1135.

    Google Scholar 

  33. McCullough DL, Roth RA, Babayan RK, Gordon JO, Reese JH, Crawford ED, et al. Transurethral ultrasound-guided laser-induced prostatectomy: national human cooperative study results. J Urol. 1993;150(5 Pt 2):1607–11.

    Article  CAS  PubMed  Google Scholar 

  34. Muschter R, Hofstetter A. Interstitial laser therapy outcome in benign prostatic hyperplasia. J Endourol. 1995;9(2):129–35.

    Article  CAS  PubMed  Google Scholar 

  35. Muller-Lisse GU, Schneede P, Heuck AF, Muschter R, Scheidler J, Reiser MF, et al. Magnetic Resonance Imaging in laser induced thermo therapy of the prostate. In: Muller GJ, Roggan A, editors. Laser-induced interstitial thermotherapy. Bellingham, Washington: SPIE—The International Society for Optical Engineering; 1995. p. 340–3.

    Google Scholar 

  36. Mueller-Lisse UG, Thoma M, Faber S, Heuck AF, Muschter R, Schneede P, et al. Coagulative interstitial laser-induced thermotherapy of benign prostatic hyperplasia: online imaging with a T2-weighted fast spin-echo MR sequence-experience in six patients. Radiology. 1999;210(2):373–9.

    Article  CAS  PubMed  Google Scholar 

  37. Henkel TO, Greschner M, Luppold T, Alken P. Transurethral and transperineal interstitial laser therapy of BPH. In: Mukker G, Roggan A, editors. Laser-induced interstitial thermotherapy. Bellingham, Washington: SPIE—The International Society for Optical Engineering; 1995. p. 416–25.

    Google Scholar 

  38. Pacella CM, Mauri G, Achille G, Barbaro D, Bizzarri G, De Feo P, et al. Outcomes and risk factors for complications of laser ablation for thyroid nodules: a multicenter study on 1531 patients. J Clin Endocrinol Metab. 2015;100(10):3903–10.

    Article  CAS  PubMed  Google Scholar 

  39. Patelli G, Ranieri A, Paganelli A, Mauri G, Pacella CM. Transperineal laser ablation for percutaneous treatment of benign prostatic hyperplasia: a feasibility study. Cardiovasc Intervent Radiol. 2017;40(9):1440–6.

    Article  PubMed  Google Scholar 

  40. Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria-a 10-year update. J Vasc Interv Radiol. 2014;25(11):1691–705 e4.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sacks D, McClenny TE, Cardella JF, Lewis CA. Society of Interventional Radiology clinical practice guidelines. J Vasc Interv Radiol. 2003;14(9 Pt 2):S199–202.

    Article  PubMed  Google Scholar 

  42. Krambeck AE, Handa SE, Lingeman JE. Experience with more than 1,000 holmium laser prostate enucleations for benign prostatic hyperplasia. J Urol. 2013;189(1 Suppl):S141–5.

    PubMed  Google Scholar 

  43. Tan AHH, Gilling PJ, Kennett KM, Frampton C, Westemberg AM, Fraundorfer MR. A randomized trial comparing holmium laser enucleation of the prostate with transurethral resection of the prostate for the treatment of bladder outlet obstruction secondary to benign prostatic hyperplasia in large glands (40 to 200 grams). J Urol. 2003;170:1270–4.

    Article  CAS  PubMed  Google Scholar 

  44. Kim KS, Choi JB, Bae WJ, Kim SJ, Cho HJ, Hong SH, et al. Comparison of photoselective vaporization versus holmium laser enucleation for treatment of benign prostate hyperplasia in a small prostate volume. PLoS One. 2016;11(5):e0156133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jones P, Rai BP, Somani BK, Aboumarzouk OM. A review of thulium laser vapo-enucleation of the prostate: a novel laser-based strategy for benign prostate enlargement. Arab J Urol. 2015;13(3):209–11.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gilling P, Barber N, Bidair M, Anderson P, Sutton M, Aho T, et al. WATER: a double-blind, randomized, controlled trial of aquablation((R)) vs transurethral resection of the prostate in benign prostatic hyperplasia. J Urol. 2018;199(5):1252–61.

    Article  PubMed  Google Scholar 

  47. Whelan JP, Bowen JM, Burke N, Woods EA, McIssac GP, Hopkins RB, et al. A prospective trial of GreenLight PVP (HPS120) versus transurethral resection of the prostate in the treatment of lower urinary tract symptoms in Ontario, Canada. Can Urol Assoc J. 2013;7(9–10):335–41.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Reich O, Gratzke C, Bachmann A, Seitz M, Schlenker B, Hermanek P, et al. Morbidity, mortality and early outcome of transurethral resection of the prostate: a prospective multicenter evaluation of 10,654 patients. J Urol. 2008;180(1):246–9.

    Article  PubMed  Google Scholar 

  49. Ruszat R, Seitz M, Wyler SF, Abe C, Rieken M, Reich O, et al. GreenLight laser vaporization of the prostate: single-center experience and long-term results after 500 procedures. Eur Urol. 2008;54(4):893–901.

    Article  PubMed  Google Scholar 

  50. Gilling P, Anderson P, Tan A. Aquablation of the prostate for symptomatic benign prostatic hyperplasia: 1-year results. J Urol. 2017;197(6):1565–72.

    Article  PubMed  Google Scholar 

  51. Yafi FA, Tallman CT, Seard ML, Jordan ML. Aquablation outcomes for the U.S. cohort of men with LUTS due to BPH in large prostates (80–150 cc). Int J Impot Res. 2018;30(5):209–14.

    Article  PubMed  Google Scholar 

  52. Montorsi F, Naspro R, Salonia A, Suardi N, Briganti A, Zanoni M, et al. Holmium laser enucleation versus transurethral resection of the prostate: results from a 2-center, prospective, randomized trial in patients with obstructive benign prostatic hyperplasia. J Urol. 2004;172(5 Pt 1):1926–9.

    Article  PubMed  Google Scholar 

  53. Ahyai SA, Gilling P, Kaplan SA, Kuntz RM, Madersbacher S, Montorsi F, et al. Meta-analysis of functional outcomes and complications following transurethral procedures for lower urinary tract symptoms resulting from benign prostatic enlargement. Eur Urol. 2010;58(3):384–97.

    Article  PubMed  Google Scholar 

  54. Yu H, Isaacson AJ, Burke CT. Review of current literature for prostatic artery embolization. Semin Intervent Radiol. 2016;33(3):231–5.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gao YA, Huang Y, Zhang R, Yang YD, Zhang Q, Hou M, et al. Benign prostatic hyperplasia: prostatic arterial embolization versus transurethral resection of the prostate-a prospective, randomized, and controlled clinical trial. Radiology. 2014;270(3):920–8.

    Article  PubMed  Google Scholar 

  56. Carnevale FC, Iscaife A, Yoshinaga EM, Moreira AM, Antunes AA, Srougi M. Transurethral Resection of the Prostate (TURP) Versus Original and PErFecTED Prostate Artery Embolization (PAE) Due to Benign Prostatic Hyperplasia (BPH): preliminary results of a single center, prospective, urodynamic-controlled analysis. Cardiovasc Intervent Radiol. 2016;39(1):44–52.

    Article  PubMed  Google Scholar 

  57. Cronin KA, Lake AJ, Scott S, Sherman RL, Noone AM, Howlader N, et al. Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer. 2018;124(13):2785–800.

    Article  PubMed  Google Scholar 

  58. Mottet N, van den Bergh RCN, Briers E, Bourke L, Cornford P, Santis M, et al. EAU—ESTRO—ESUR—SIOG Guidelines on Prostate Cancer. 2018.

    Google Scholar 

  59. Potosky AL, Miller BA, Albertsen PC, Kramer BS. The role of increasing detection in the rising incidence of prostate cancer. JAMA. 1995;273(7):548–52.

    Article  CAS  PubMed  Google Scholar 

  60. Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad L, Magi-Galluzzi C, et al. A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol. 2016;69(3):428–35.

    Article  PubMed  Google Scholar 

  61. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol. 2014;65(1):124–37.

    Article  PubMed  Google Scholar 

  62. Colin P, Mordon S, Nevoux P, Marqa MF, Ouzzane A, Puech P, et al. Focal laser ablation of prostate cancer: definition, needs, and future. Adv Urol. 2012;2012:589160.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360(13):1320–8.

    Article  PubMed  Google Scholar 

  64. Vargas HA, Hotker AM, Goldman DA, Moskowitz CS, Gondo T, Matsumoto K, et al. Updated prostate imaging reporting and data system (PIRADS v2) recommendations for the detection of clinically significant prostate cancer using multiparametric MRI: critical evaluation using whole-mount pathology as standard of reference. Eur Radiol. 2016;26(6):1606–12.

    Article  CAS  PubMed  Google Scholar 

  65. Walser E, Nance A, Ynalvez L, Yong S, Aoughsten JS, Eyzaguirre EJ, et al. Focal laser ablation of prostate cancer: results in 120 patients with low- to intermediate-risk disease. J Vasc Interv Radiol. 2019;30(3):401–9 e2.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Johnson DE, Cromeens DM, Price RE. Interstitial laser prostatectomy. Lasers Surg Med. 1994;14(4):299–305.

    Article  CAS  PubMed  Google Scholar 

  67. Amin Z, Lees WR, Bown SG. Technical note: interstitial laser photocoagulation for the treatment of prostatic cancer. Br J Radiol. 1993;66(791):1044–7.

    Article  CAS  PubMed  Google Scholar 

  68. Peters RD, Chan E, Trachtenberg J, Jothy S, Kapusta L, Kucharczyk W, et al. Magnetic resonance thermometry for predicting thermal damage: an application of interstitial laser coagulation in an in vivo canine prostate model. Magn Reson Med. 2000;44(6):873–83.

    Article  CAS  PubMed  Google Scholar 

  69. Fuentes D, Oden JT, Diller KR, Hazle JD, Elliott A, Shetty A, et al. Computational modeling and real-time control of patient-specific laser treatment of cancer. Ann Biomed Eng. 2009;37(4):763–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. van Nimwegen SA, L'Eplattenier HF, Rem AI, van der Lugt JJ, Kirpensteijn J. Nd:YAG surgical laser effects in canine prostate tissue: temperature and damage distribution. Phys Med Biol. 2009;54(1):29–44.

    Article  PubMed  Google Scholar 

  71. Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K. Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng. 2010;38(1):79–100.

    Article  PubMed  Google Scholar 

  72. Colin P, Nevoux P, Marqa M, Auger F, Leroy X, Villers A, et al. Focal laser interstitial thermotherapy (LITT) at 980 nm for prostate cancer: treatment feasibility in Dunning R3327-AT2 rat prostate tumour. BJU Int. 2012;109(3):452–8.

    Article  PubMed  Google Scholar 

  73. Lindner U, Lawrentschuk N, Weersink RA, Raz O, Hlasny E, Sussman MS, et al. Construction and evaluation of an anatomically correct multi-image modality compatible phantom for prostate cancer focal ablation. J Urol. 2010;184(1):352–7.

    Article  PubMed  Google Scholar 

  74. Woodrum DA, Gorny KR, Mynderse LA, Amrami KK, Felmlee JP, Bjarnason H, et al. Feasibility of 3.0T magnetic resonance imaging-guided laser ablation of a cadaveric prostate. Urology. 2010;75(6):1514 e1–6.

    Article  Google Scholar 

  75. Evans AJ, Ryan P, Van der Kwast T. Treatment effects in the prostate including those associated with traditional and emerging therapies. Adv Anat Pathol. 2011;18(4):281–93.

    Article  CAS  PubMed  Google Scholar 

  76. Martenson AC, De La Rosette JJ. Interstitial laser coagulation in the treatment of benign prostatic hyperplasia using a diode laser system: results of an evolving technology. Prostate Cancer Prostatic Dis. 1999;2(3):148–54.

    Article  CAS  PubMed  Google Scholar 

  77. Lindner U, Lawrentschuk N, Weersink RA, Davidson SR, Raz O, Hlasny E, et al. Focal laser ablation for prostate cancer followed by radical prostatectomy: validation of focal therapy and imaging accuracy. Eur Urol. 2010;57(6):1111–4.

    Article  PubMed  Google Scholar 

  78. Lindner U, Weersink RA, Haider MA, Gertner MR, Davidson SR, Atri M, et al. Image guided photothermal focal therapy for localized prostate cancer: phase I trial. J Urol. 2009;182(4):1371–7.

    Article  CAS  PubMed  Google Scholar 

  79. Raz O, Haider MA, Davidson SR, Lindner U, Hlasny E, Weersink R, et al. Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur Urol. 2010;58(1):173–7.

    Article  PubMed  Google Scholar 

  80. Atri M, Gertner MR, Haider MA, Weersink RA, Trachtenberg J. Contrast-enhanced ultrasonography for real-time monitoring of interstitial laser thermal therapy in the focal treatment of prostate cancer. Can Urol Assoc J. 2009;3(2):125–30.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bomers JGR, Cornel EB, Futterer JJ, Jenniskens SFM, Schaafsma HE, Barentsz JO, et al. MRI-guided focal laser ablation for prostate cancer followed by radical prostatectomy: correlation of treatment effects with imaging. World J Urol. 2017;35(5):703–11.

    Article  PubMed  Google Scholar 

  82. Eggener SE, Yousuf A, Watson S, Wang S, Oto A. Phase II evaluation of magnetic resonance imaging guided focal laser ablation of prostate cancer. J Urol. 2016;196(6):1670–5.

    Article  PubMed  Google Scholar 

  83. Natarajan S, Jones TA, Priester AM, Geoghegan R, Lieu P, Delfin M, et al. Focal laser ablation of prostate cancer: feasibility of magnetic resonance imaging-ultrasound fusion for guidance. J Urol. 2017;198(4):839–47.

    Article  PubMed  Google Scholar 

  84. Natarajan S, Raman S, Priester AM, Garritano J, Margolis DJ, Lieu P, et al. Focal laser ablation of prostate cancer: phase I clinical trial. J Urol. 2016;196(1):68–75.

    Article  PubMed  Google Scholar 

  85. Oto A, Sethi I, Karczmar G, McNichols R, Ivancevic MK, Stadler WM, et al. MR imaging-guided focal laser ablation for prostate cancer: phase I trial. Radiology. 2013;267(3):932–40.

    Article  PubMed  Google Scholar 

  86. Le Nobin J, Rosenkrantz AB, Villers A, Orczyk C, Deng FM, Melamed J, et al. Image guided focal therapy for magnetic resonance imaging visible prostate cancer: defining a 3-dimensional treatment margin based on magnetic resonance imaging histology co-registration analysis. J Urol. 2015;194(2):364–70.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012;22(4):746–57.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yoo S, Kim JK, Jeong IG. Multiparametric magnetic resonance imaging for prostate cancer: a review and update for urologists. Korean J Urol. 2015;56(7):487–97.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yarlagadda VK, Lai WS, Gordetsky JB, Porter KK, Nix JW, Thomas JV, et al. MRI/US fusion-guided prostate biopsy allows for equivalent cancer detection with significantly fewer needle cores in biopsy-naive men. Diagn Interv Radiol. 2018;24(3):115–20.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kongnyuy M, George AK, Rastinehad AR, Pinto PA. Magnetic resonance imaging-ultrasound fusion-guided prostate biopsy: review of technology, techniques, and outcomes. Curr Urol Rep. 2016;17(4):32.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Westin C, Chatterjee A, Ku E, Yousuf A, Wang S, Thomas S, et al. MRI findings after MRI-guided focal laser ablation of prostate cancer. AJR Am J Roentgenol. 2018;211(3):595–604.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: Pre- and Postoperative Imaging Diagnostic Techniques

Appendix: Pre- and Postoperative Imaging Diagnostic Techniques

13.1.1 Multiparametric Magnetic Resonance Imaging for Prostate Cancer

Magnetic resonance imaging (MRI) is a scanning method that makes use of a strong magnetic field, radio waves, and dedicated computer software to show detailed images of organs and tissues in the body. The employment of different pulse sequences, or parameters, during the MRI examination helps in highlighting specific differences between healthy and unhealthy tissue. When two or more parameters are used, it goes under the name of multiparametric MRI (mpMRI).

Prostate multiparametric MRI documents gland anatomy and any pathologic process within and around it. Four parameters are routinely used in prostate cancer detection, each highlighting different tissue features. T2-weighted sequence (T2 MRI) yields a multiplanar (3D) map of prostate zone anatomy; a suspicious-looking area is referred to as a region of interest (ROI). Diffusion-weighted imaging (DWI MRI) shows movement of water molecules within a given tissue; cancer cells restrict the motion more than normal cells do, which shows up in DWI MRI.

Dynamic contrast-enhanced imaging (DCE MRI) reveals pathologic blood flow. Prostate cancer develops its own blood vessels, which look abnormal. When injected, the contrast agent is quickly taken up by those aberrant vessels, then washes out, and is later excreted in urine. As well, the pace of the uptake/washout yields additional information about the nature of the neoplasm.

Spectroscopy (MRI-S) may be added as a fourth parameter. When prostate cancer is present, its survival is maintained through certain chemical processes (metabolism) that are distinct from normal cell metabolism. MRI-S gives metabolic information useful in confirming prostate cancer [87, 88].

Multiparametric MRI of the prostate is the imaging of choice for men with rising or abnormally high PSA, a previous negative biopsy with recent increase in prostate-specific antigen (PSA) levels, or the presence of additional findings warranting its use in non-biopsied patients. This exam is also used as active surveillance in patients with proven cancer that do not require therapy at the time.

Prostate mpMRI can rule in or out a biopsy in people already treated for cancer, as mpMRI can confirm therapy success and monitor for disease recurrence outside the treatment area. Malignancy risk assessment of a prostatic lesion detected with magnetic resonance imaging is made using an image-based risk reporting system called Prostate Imaging Reporting and Data System (PI-RADSv.2) (American college of radiology. MR prostate imaging reporting and data system version 2.0 [internet] Available from: Http://www.Acr.Org/quality-safety/resources/pirads/ [cited 2015 jun 16]). PIRADS v.2 allows for data obtained from the aforementioned MRI parameters to be collected jointly in a unique score; after all imaging sequences are evaluated and a score is given for each, those are combined resulting in a final outcome between 1 and 5 for the suspected lesion.

13.1.2 Prostate Biopsy Techniques

Currently, there are three different MRI-guided biopsy techniques available: MRI-ultrasound fusion, MRI-MRI fusion (“in-bore” biopsy), and cognitive fusion.

The MRI-US fusion biopsy enables the operator to merge the images obtained from the prostatic mpMRI where the index lesion was identified, performed beforehand, and then stored on the device, with real-time US imaging by means of a special 3D software. As the US probe is advanced via a transrectal approach, the fusion software shifts the MRI image accordingly, guiding needle positioning; this allows for better visualization of the lesion and higher procedural accuracy, as many trials have shown [89, 90]. Additionally, needle location in the 3D space can be tracked and recorded for future reference. As a new application of the technique, the MRI-US fusion may gain interest as a guidance tool for selective focal ablation of prostate cancer.

In MRI-MRI fusion (“in-bore” biopsy) the procedure is performed directly in the MRI suite as real-time imaging is obtained during biopsy execution.

The cognitive fusion is an easy-to-use technique simply based on the review, by the biopsy operator, of a previously acquired MRI to help guiding needle positioning under TRUS guidance.

Overall, high-resolution mpMRI of the prostate safely provides all the information needed in order to take the best next step decision in the setting of a neoplastic lesion. Furthermore, it is used to guide precision focal treatments such as focal laser ablation [91].

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pacella, C.M., Mauri, G., Manenti, G., Perretta, T., Patelli, G. (2020). Benign Prostatic Hyperplasia and Prostate Cancer Laser Ablation. In: Pacella, C., Jiang, T., Mauri, G. (eds) Image-guided Laser Ablation. Springer, Cham. https://doi.org/10.1007/978-3-030-21748-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21748-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21747-1

  • Online ISBN: 978-3-030-21748-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics