Skip to main content

Roles of Ceramides and Other Sphingolipids in Immune Cell Function and Inflammation

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1161))

Abstract

Ceramides are bioactive sphingolipids that support the structure of the plasma membrane and mediate numerous cell-signaling events in eukaryotic cells. The finding that ceramides act as second messengers transducing cellular signals has attracted substantial attention in several fields of Biology. Since all cells contain lipid plasma membranes, the impact of various ceramides, ceramide synthases, ceramide metabolites, and other sphingolipids has been implicated in a vast range of cellular functions including, migration, proliferation, response to external stimuli, and death. The roles of lipids in these functions widely differ among the diverse cell types. Herein, we discuss the roles of ceramides and other sphingolipids in mediating the function of various immune cells; particularly dendritic cells, neutrophils, and macrophages. In addition, we highlight the main studies describing effects of ceramides in inflammation, specifically in various inflammatory settings including insulin resistance, graft-versus-host disease, immune suppression in cancer, multiple sclerosis, and inflammatory bowel disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3KS:

3-keto-sphinganine

acyl-CoA:

fatty acyl-coenzyme A

aSMase:

acid sphingomyelinase

ATM:

adipose tissue macrophages

C1P:

ceramide 1-phosphate

CerS:

ceramide synthases

CNS:

central nervous system

COX-2:

cyclooxygenase-2

CTL:

cytotoxic T lymphocytes

CXCR2:

C-X-C motif chemokine receptor type 2

DAG:

diacylglycerol

DC:

dendritic cells

DSS:

dextran sulfate sodium

EAE:

autoimmune encephalomyelitis

ERK:

extracellular signal-regulated kinases

fMLP:

N-formylmethionine-leucyl-phenylalanine

GalCer:

galactosylceramides

G-CSF:

granulocyte-colony stimulating factor

GI:

gastrointestinal

GVHD:

Graft-Versus-Host Disease

HIV:

human immunodeficiency virus

IBD:

Inflammatory Bowel Disease

IFNγ:

interferon gamma

IL-:

interleukin

iNOS:

inducible nitric oxide synthase

IRS-1:

insulin receptor substrate-1

JNK:

c-Jun N-terminal kinase

LacCer:

lactosylceramide

LipC6:

nanoliposome-loaded C6-ceramide

LPS:

lipopolysaccharide

MAPK:

mitogen-activated protein kinase

M-CSF:

macrophage-colony stimulating factor

MDSC:

myeloid-derived suppressor cells

MS:

Multiple Sclerosis

NETs:

neutrophil extracellular traps

Nlrp3:

Nod-like receptor pyrin domain-containing-3

NO:

nitric oxide

PI3K:

phosphatidylinositol 3 kinase

PKB:

protein kinase B

PKCζ:

protein kinase C zeta

PRR:

pattern recognition receptors

ROS:

reactive oxygen species

S1P:

sphingosine 1-phosphate

Sa:

sphinganine

SK:

sphingosine kinase

SLs:

sphingolipids

SMase:

sphingomyelinase

So:

sphingosine

SPT:

serine palmitoyltransferase

TAM:

tumor-associated macrophages

TCR:

T cell receptor

TEM:

tumor microenvironment

TGFβ:

transforming growth factor beta

TLRs:

toll-like receptor

TNFα:

tumor necrosis factor alpha

Treg:

regulatory CD4+ T cells

References

  1. Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111:6387–6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Park JW, Park WJ, Futerman AH (2014) Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim Biophys Acta 1841:671–681

    Article  CAS  PubMed  Google Scholar 

  3. Don AS, Lim XY, Couttas TA (2014) Re-configuration of sphingolipid metabolism by oncogenic transformation. Biomol Ther 4:315–353

    Google Scholar 

  4. Lopez PH, Schnaar RL (2009) Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 19:549–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286:27855–27862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Abou-Ghali M, Stiban J (2015) Regulation of ceramide channel formation and disassembly: insights on the initiation of apoptosis. Saudi J Biol Sci 22:760–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rappocciolo E, Stiban J (2019) Prokaryotic and mitochondrial lipids: a survey of evolutionary origins. Adv Exp Med Biol 1159. https://doi.org/10.1007/978-3-030-21162-2. (in press)

    Google Scholar 

  8. Bikman BT, Summers SA (2011) Ceramides as modulators of cellular and whole-body metabolism. J Clin Invest 121:4222–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stiban J, Tidhar R, Futerman AH (2010) Ceramide synthases: roles in cell physiology and signaling. Adv Exp Med Biol 688:60–71

    Article  CAS  PubMed  Google Scholar 

  10. Tidhar R, Futerman AH (2013) The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim Biophys Acta 1833:2511–2518

    Article  CAS  PubMed  Google Scholar 

  11. Boulgaropoulos B, Amenitsch H, Laggner P, Pabst G (2010) Implication of sphingomyelin/ceramide molar ratio on the biological activity of sphingomyelinase. Biophys J 99:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Claus RA, Dorer MJ, Bunck AC, Deigner HP (2009) Inhibition of sphingomyelin hydrolysis: targeting the lipid mediator ceramide as a key regulator of cellular fate. Curr Med Chem 16:1978–2000

    Article  CAS  PubMed  Google Scholar 

  13. Kitatani K, Idkowiak-Baldys J, Hannun YA (2008) The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20:1010–1018

    Article  CAS  PubMed  Google Scholar 

  14. Mullen TD, Hannun YA, Obeid LM (2012) Ceramide synthases at the Centre of sphingolipid metabolism and biology. Biochem J 441:789–802

    Article  CAS  PubMed  Google Scholar 

  15. Zelnik ID, Rozman B, Rosenfeld-Gur E, Ben-Dor S, Futerman AH (2019) A stroll down the CerS lane. Adv Exp Med Biol 1159. https://doi.org/10.1007/978-3-030-21162-2. (in press)

    Google Scholar 

  16. Laviad EL, Albee L, Pankova-Kholmyansky I, Epstein S, Park H, Merrill AH Jr, Futerman AH (2008) Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J Biol Chem 283:5677–5684

    Article  CAS  PubMed  Google Scholar 

  17. Ginkel C, Hartmann D, vom Dorp K, Zlomuzica A, Farwanah H, Eckhardt M, Sandhoff R, Degen J, Rabionet M, Dere E, Dormann P, Sandhoff K, Willecke K (2012) Ablation of neuronal ceramide synthase 1 in mice decreases ganglioside levels and expression of myelin-associated glycoprotein in oligodendrocytes. J Biol Chem 287:41888–41902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jennemann R, Rabionet M, Gorgas K, Epstein S, Dalpke A, Rothermel U, Bayerle A, van der Hoeven F, Imgrund S, Kirsch J, Nickel W, Willecke K, Riezman H, Grone HJ, Sandhoff R (2012) Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet 21:586–608

    Article  CAS  PubMed  Google Scholar 

  19. Mizutani Y, Kihara A, Igarashi Y (2005) Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J 390:263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gosejacob D, Jager PS, Vom Dorp K, Frejno M, Carstensen AC, Kohnke M, Degen J, Dormann P, Hoch M (2016) Ceramide synthase 5 is essential to maintain C16:0-ceramide pools and contributes to the development of diet-induced obesity. J Biol Chem 291:6989–7003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tidhar R, Zelnik ID, Volpert G, Ben-Dor S, Kelly S, Merrill AH Jr, Futerman AH (2018) Eleven residues determine the acyl chain specificity of ceramide synthases. J Biol Chem 293:9912–9921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao L, Spassieva SD, Jucius TJ, Shultz LD, Shick HE, Macklin WB, Hannun YA, Obeid LM, Ackerman SL (2011) A deficiency of ceramide biosynthesis causes cerebellar Purkinje cell neurodegeneration and lipofuscin accumulation. PLoS Genet 7:e1002063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin H, Wang C, Gu D, Zhang Y, Fan S, Xing S, Wang H, Ruan H, Yang C, Lv Y, Feng H, Yao M, Qin W (2017) Liver-specific deletion of LASS2 delayed regeneration of mouse liver after partial hepatectomy. Biochem Biophys Res Commun 493:1176–1183

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, Han Y, Gu Y, Liu Y, Jiang Z, Zhang M, Cao X (2013) CD11c(high)CD8+ regulatory T cell feedback inhibits CD4 T cell immune response via Fas ligand-Fas pathway. J Immunol (Baltimore, Md: 1950) 190:6145–6154

    Article  CAS  Google Scholar 

  25. Park WJ, Brenner O, Kogot-Levin A, Saada A, Merrill AH Jr, Pewzner-Jung Y, Futerman AH (2015) Development of pheochromocytoma in ceramide synthase 2 null mice. Endocr Relat Cancer 22:623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barthelmes J, de Bazo AM, Pewzner-Jung Y, Schmitz K, Mayer CA, Foerch C, Eberle M, Tafferner N, Ferreiros N, Henke M, Geisslinger G, Futerman AH, Grosch S, Schiffmann S (2015) Lack of ceramide synthase 2 suppresses the development of experimental autoimmune encephalomyelitis by impairing the migratory capacity of neutrophils. Brain Behav Immun 46:280–292

    Article  CAS  PubMed  Google Scholar 

  27. Chen L, Lu X, Zeng T, Chen Y, Chen Q, Wu W, Yan X, Cai H, Zhang Z, Shao Q, Qin W (2014) Enhancement of DEN-induced liver tumourigenesis in hepatocyte-specific Lass2-knockout mice coincident with upregulation of the TGF-beta1-Smad4-PAI-1 axis. Oncol Rep 31:885–893

    Article  CAS  PubMed  Google Scholar 

  28. Imgrund S, Hartmann D, Farwanah H, Eckhardt M, Sandhoff R, Degen J, Gieselmann V, Sandhoff K, Willecke K (2009) Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J Biol Chem 284:33549–33560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pewzner-Jung Y, Brenner O, Braun S, Laviad EL, Ben-Dor S, Feldmesser E, Horn-Saban S, Amann-Zalcenstein D, Raanan C, Berkutzki T, Erez-Roman R, Ben-David O, Levy M, Holzman D, Park H, Nyska A, Merrill AH Jr, Futerman AH (2010a) A critical role for ceramide synthase 2 in liver homeostasis: II. Insights into molecular changes leading to hepatopathy. J Biol Chem 285:10911–10923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pewzner-Jung Y, Park H, Laviad EL, Silva LC, Lahiri S, Stiban J, Erez-Roman R, Brugger B, Sachsenheimer T, Wieland F, Prieto M, Merrill AH Jr, Futerman AH (2010b) A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways. J Biol Chem 285:10902–10910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rabionet M, Bayerle A, Jennemann R, Heid H, Fuchser J, Marsching C, Porubsky S, Bolenz C, Guillou F, Grone HJ, Gorgas K, Sandhoff R (2015) Male meiotic cytokinesis requires ceramide synthase 3-dependent sphingolipids with unique membrane anchors. Hum Mol Genet 24:4792–4808

    Article  CAS  PubMed  Google Scholar 

  32. Ebel P, Imgrund S, Vom Dorp K, Hofmann K, Maier H, Drake H, Degen J, Dormann P, Eckhardt M, Franz T, Willecke K (2014) Ceramide synthase 4 deficiency in mice causes lipid alterations in sebum and results in alopecia. Biochem J 461:147–158

    Article  CAS  PubMed  Google Scholar 

  33. Scheffel MJ, Helke K, Lu P, Bowers JS, Ogretmen B, Garrett-Mayer E, Paulos CM, Voelkel-Johnson C (2017) Adoptive transfer of ceramide synthase 6 deficient Splenocytes reduces the development of colitis. Sci Rep 7:15552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ebel P, Vom Dorp K, Petrasch-Parwez E, Zlomuzica A, Kinugawa K, Mariani J, Minich D, Ginkel C, Welcker J, Degen J, Eckhardt M, Dere E, Dormann P, Willecke K (2013) Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. J Biol Chem 288:21433–21447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peters F, Vorhagen S, Brodesser S, Jakobshagen K, Bruning JC, Niessen CM, Kronke M (2015) Ceramide synthase 4 regulates stem cell homeostasis and hair follicle cycling. J Invest Dermatol 135:1501–1509

    Article  CAS  PubMed  Google Scholar 

  36. Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5:777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hannun YA, Luberto C (2000) Ceramide in the eukaryotic stress response. Trends Cell Biol 10:73–80

    Article  CAS  PubMed  Google Scholar 

  38. Pinto SN, Silva LC, Futerman AH, Prieto M (2011) Effect of ceramide structure on membrane biophysical properties: the role of acyl chain length and unsaturation. Biochim Biophys Acta 1808:2753–2760

    Article  CAS  PubMed  Google Scholar 

  39. Silva LC, Ben David O, Pewzner-Jung Y, Laviad EL, Stiban J, Bandyopadhyay S, Merrill AH Jr, Prieto M, Futerman AH (2012) Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes. J Lipid Res 53:430–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Silva LC, Futerman AH, Prieto M (2009) Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations. Biophys J 96:3210–3222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stiban JS, Silva LC, Futerman AH (2008) Ceramide-containing membranes: the interface between biophysics and biology. Trends Glycosci Glycotechnol 20:297–313

    Article  CAS  Google Scholar 

  42. Stiban J (2019) Introduction: enigmas of sphingolipids. Adv Exp Med Biol 1159. https://doi.org/10.1007/978-3-030-21162-2. (in press)

    Google Scholar 

  43. Hannun YA, Obeid LM (2002) The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277:25847–25850

    Article  CAS  PubMed  Google Scholar 

  44. Nganga R, Oleinik N, Ogretmen B (2018) Mechanisms of ceramide-dependent cancer cell death. Adv Cancer Res 140:1–25

    Article  PubMed  Google Scholar 

  45. Kolesnick R, Golde DW (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77:325–328

    Article  CAS  PubMed  Google Scholar 

  46. Maceyka M, Spiegel S (2014) Sphingolipid metabolites in inflammatory disease. Nature 510:58–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Colombini M (2019) Ceramide channels. Adv Exp Med Biol 1159. https://doi.org/10.1007/978-3-030-21162-2. (in press)

    Google Scholar 

  48. Siskind LJ, Colombini M (2000) The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis. J Biol Chem 275:38640–38644

    Article  CAS  PubMed  Google Scholar 

  49. Siskind LJ, Davoody A, Lewin N, Marshall S, Colombini M (2003) Enlargement and contracture of C2-ceramide channels. Biophys J 85:1560–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Samanta S, Stiban J, Maugel TK, Colombini M (2011) Visualization of ceramide channels by transmission electron microscopy. Biochim Biophys Acta 1808:1196–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Siskind LJ, Kolesnick RN, Colombini M (2002) Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem 277:26796–26803

    Article  CAS  PubMed  Google Scholar 

  52. Siskind LJ, Kolesnick RN, Colombini M (2006) Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6:118–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stiban J, Fistere D, Colombini M (2006) Dihydroceramide hinders ceramide channel formation: implications on apoptosis. Apoptosis 11:773–780

    Article  CAS  PubMed  Google Scholar 

  54. Yamane M, Moriya S, Kokuba H (2017) Visualization of ceramide channels in lysosomes following endogenous palmitoyl-ceramide accumulation as an initial step in the induction of necrosis. Biochem Biophys Rep 11:174–181

    PubMed  PubMed Central  Google Scholar 

  55. Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22

    Article  CAS  PubMed  Google Scholar 

  56. Steinman RM, Cohn ZA (2007) Pillars article: identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Immunol (Baltimore, Md: 1950) 178:5–25

    Google Scholar 

  57. Ashany D, Savir A, Bhardwaj N, Elkon KB (1999) Dendritic cells are resistant to apoptosis through the Fas (CD95/APO-1) pathway. J Immunol (Baltimore, Md: 1950) 163:5303–5311

    CAS  Google Scholar 

  58. Kanto T, Kalinski P, Hunter OC, Lotze MT, Amoscato AA (2001) Ceramide mediates tumor-induced dendritic cell apoptosis. J Immunol (Baltimore, Md: 1950) 167:3773–3784

    Article  CAS  Google Scholar 

  59. Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182:389–400

    Article  CAS  PubMed  Google Scholar 

  60. Sallusto F, Nicolo C, De Maria R, Corinti S, Testi R (1996) Ceramide inhibits antigen uptake and presentation by dendritic cells. J Exp Med 184:2411–2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Franchi L, Malisan F, Tomassini B, Testi R (2006) Ceramide catabolism critically controls survival of human dendritic cells. J Leukoc Biol 79:166–172

    Article  CAS  PubMed  Google Scholar 

  62. Joseph CK, Wright SD, Bornmann WG, Randolph JT, Kumar ER, Bittman R, Liu J, Kolesnick RN (1994) Bacterial lipopolysaccharide has structural similarity to ceramide and stimulates ceramide-activated protein kinase in myeloid cells. J Biol Chem 269:17606–17610

    CAS  PubMed  Google Scholar 

  63. MacKichan ML, DeFranco AL (1999) Role of ceramide in lipopolysaccharide (LPS)-induced signaling. LPS increases ceramide rather than acting as a structural homolog. J Biol Chem 274:1767–1775

    Article  CAS  PubMed  Google Scholar 

  64. Harouse JM, Bhat S, Spitalnik SL, Laughlin M, Stefano K, Silberberg DH, Gonzalez-Scarano F (1991) Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science (New York, NY) 253:320–323

    Article  CAS  Google Scholar 

  65. Yahi N, Sabatier JM, Baghdiguian S, Gonzalez-Scarano F, Fantini J (1995) Synthetic multimeric peptides derived from the principal neutralization domain (V3 loop) of human immunodeficiency virus type 1 (HIV-1) gp120 bind to galactosylceramide and block HIV-1 infection in a human CD4-negative mucosal epithelial cell line. J Virol 69:320–325

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Alfsen A, Bomsel M (2002) HIV-1 gp41 envelope residues 650-685 exposed on native virus act as a lectin to bind epithelial cell galactosyl ceramide. J Biol Chem 277:25649–25659

    Article  CAS  PubMed  Google Scholar 

  67. Alfsen A, Iniguez P, Bouguyon E, Bomsel M (2001) Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J Immunol (Baltimore, Md: 1950) 166:6257–6265

    Article  CAS  Google Scholar 

  68. Lingwood CA, Branch DR (2011) The role of glycosphingolipids in HIV/AIDS. Discov Med 11:303–313

    PubMed  Google Scholar 

  69. Magerus-Chatinet A, Yu H, Garcia S, Ducloux E, Terris B, Bomsel M (2007) Galactosyl ceramide expressed on dendritic cells can mediate HIV-1 transfer from monocyte derived dendritic cells to autologous T cells. Virology 362:67–74

    Article  CAS  PubMed  Google Scholar 

  70. Avota E, Gulbins E, Schneider-Schaulies S (2011) DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog 7:e1001290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pritzl CJ, Seo YJ, Xia C, Vijayan M, Stokes ZD, Hahm B (2015) A ceramide analogue stimulates dendritic cells to promote T cell responses upon virus infections. J Immunol (Baltimore, Md: 1950) 194:4339–4349

    Article  CAS  Google Scholar 

  72. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531

    Article  CAS  PubMed  Google Scholar 

  73. Wilson E, Wang E, Mullins RE, Uhlinger DJ, Liotta DC, Lambeth JD, Merrill AH Jr (1988) Modulation of the free sphingosine levels in human neutrophils by phorbol esters and other factors. J Biol Chem 263:9304–9309

    CAS  PubMed  Google Scholar 

  74. Utsumi T, Klostergaard J, Akimaru K, Edashige K, Sato EF, Utsumi K (1992) Modulation of TNF-alpha-priming and stimulation-dependent superoxide generation in human neutrophils by protein kinase inhibitors. Arch Biochem Biophys 294:271–278

    Article  CAS  PubMed  Google Scholar 

  75. Ohta H, Yatomi Y, Sweeney EA, Hakomori S, Igarashi Y (1994) A possible role of sphingosine in induction of apoptosis by tumor necrosis factor-alpha in human neutrophils. FEBS Lett 355:267–270

    Article  CAS  PubMed  Google Scholar 

  76. Kim MY, Linardic C, Obeid L, Hannun Y (1991) Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem 266:484–489

    CAS  PubMed  Google Scholar 

  77. Dressler KA, Mathias S, Kolesnick RN (1992) Tumor necrosis factor-alpha activates the sphingomyelin signal transduction pathway in a cell-free system. Science (New York, NY) 255:1715–1718

    Article  CAS  Google Scholar 

  78. Fiore S, Nicolaou KC, Caulfield T, Kataoka H, Serhan CN (1990) Evaluation of synthetic sphingosine, lysosphingolipids and glycosphingolipids as inhibitors of functional responses of human neutrophils. Biochem J 266:25–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Robinson BS, Hii CS, Poulos A, Ferrante A (1997) Activation of neutral sphingomyelinase in human neutrophils by polyunsaturated fatty acids. Immunology 91:274–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ahmed N, Berridge MV (2000) Ceramides that mediate apoptosis reduce glucose uptake and transporter affinity for glucose in human leukaemic cell lines but not in neutrophils. Pharmacol Toxicol 86:114–121

    Article  CAS  PubMed  Google Scholar 

  81. Fuortes M, Jin W, Nathan C (1996) Ceramide selectively inhibits early events in the response of human neutrophils to tumor necrosis factor. J Leukoc Biol 59:451–460

    Article  CAS  PubMed  Google Scholar 

  82. Nakamura T, Abe A, Balazovich KJ, Wu D, Suchard SJ, Boxer LA, Shayman JA (1994) Ceramide regulates oxidant release in adherent human neutrophils. J Biol Chem 269:18384–18389

    CAS  PubMed  Google Scholar 

  83. Sitrin RG, Sassanella TM, Petty HR (2011) An obligate role for membrane-associated neutral sphingomyelinase activity in orienting chemotactic migration of human neutrophils. Am J Respir Cell Mol Biol 44:205–212

    Article  CAS  PubMed  Google Scholar 

  84. Suchard SJ, Mansfield PJ, Boxer LA, Shayman JA (1997b) Mitogen-activated protein kinase activation during IgG-dependent phagocytosis in human neutrophils: inhibition by ceramide. J Immunol (Baltimore, Md: 1950) 158:4961–4967

    CAS  Google Scholar 

  85. Hinkovska-Galcheva V, Kjeldsen L, Mansfield PJ, Boxer LA, Shayman JA, Suchard SJ (1998) Activation of a plasma membrane-associated neutral sphingomyelinase and concomitant ceramide accumulation during IgG-dependent phagocytosis in human polymorphonuclear leukocytes. Blood 91:4761–4769

    CAS  PubMed  Google Scholar 

  86. Suchard SJ, Hinkovska-Galcheva V, Mansfield PJ, Boxer LA, Shayman JA (1997a) Ceramide inhibits IgG-dependent phagocytosis in human polymorphonuclear leukocytes. Blood 89:2139–2147

    CAS  PubMed  Google Scholar 

  87. Hinkovska-Galcheva V, Boxer L, Mansfield PJ, Schreiber AD, Shayman JA (2003) Enhanced phagocytosis through inhibition of de novo ceramide synthesis. J Biol Chem 278:974–982

    Article  CAS  PubMed  Google Scholar 

  88. Corriden R, Hollands A, Olson J, Derieux J, Lopez J, Chang JT, Gonzalez DJ, Nizet V (2015) Tamoxifen augments the innate immune function of neutrophils through modulation of intracellular ceramide. Nat Commun 6:8369

    Article  CAS  PubMed  Google Scholar 

  89. Seumois G, Fillet M, Gillet L, Faccinetto C, Desmet C, Francois C, Dewals B, Oury C, Vanderplasschen A, Lekeux P, Bureau F (2007) De novo C16- and C24-ceramide generation contributes to spontaneous neutrophil apoptosis. J Leukoc Biol 81:1477–1486

    Article  CAS  PubMed  Google Scholar 

  90. Scheel-Toellner D, Wang K, Assi LK, Webb PR, Craddock RM, Salmon M, Lord JM (2004) Clustering of death receptors in lipid rafts initiates neutrophil spontaneous apoptosis. Biochem Soc Trans 32:679–681

    Article  CAS  PubMed  Google Scholar 

  91. Manago A, Becker KA, Carpinteiro A, Wilker B, Soddemann M, Seitz AP, Edwards MJ, Grassme H, Szabo I, Gulbins E (2015) Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxid Redox Signal 22:1097–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tafesse FG, Huitema K, Hermansson M, van der Poel S, van den Dikkenberg J, Uphoff A, Somerharju P, Holthuis JC (2007) Both sphingomyelin synthases SMS1 and SMS2 are required for sphingomyelin homeostasis and growth in human HeLa cells. J Biol Chem 282:17537–17547

    Article  CAS  PubMed  Google Scholar 

  93. Tafesse FG, Ternes P, Holthuis JC (2006) The multigenic sphingomyelin synthase family. J Biol Chem 281:29421–29425

    Article  CAS  PubMed  Google Scholar 

  94. Qureshi A, Subathra M, Grey A, Schey K, Del Poeta M, Luberto C (2010) Role of sphingomyelin synthase in controlling the antimicrobial activity of neutrophils against Cryptococcus neoformans. PLoS One 5:e15587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Symington FW, Hedges DL, Hakomori S (1985) Glycolipid antigens of human polymorphonuclear neutrophils and the inducible HL-60 myeloid leukemia line. J Immunol (Baltimore, Md: 1950) 134:2498–2506

    CAS  Google Scholar 

  96. Arai T, Bhunia AK, Chatterjee S, Bulkley GB (1998) Lactosylceramide stimulates human neutrophils to upregulate Mac-1, adhere to endothelium, and generate reactive oxygen metabolites in vitro. Circ Res 82:540–547

    Article  CAS  PubMed  Google Scholar 

  97. Iwabuchi K, Nagaoka I (2002) Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood 100:1454–1464

    CAS  PubMed  Google Scholar 

  98. Chiricozzi E, Ciampa MG, Brasile G, Compostella F, Prinetti A, Nakayama H, Ekyalongo RC, Iwabuchi K, Sonnino S, Mauri L (2015) Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells. J Lipid Res 56:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iwabuchi K, Prinetti A, Sonnino S, Mauri L, Kobayashi T, Ishii K, Kaga N, Murayama K, Kurihara H, Nakayama H, Yoshizaki F, Takamori K, Ogawa H, Nagaoka I (2008) Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj J 25:357–374

    Article  CAS  PubMed  Google Scholar 

  100. Sonnino S, Prinetti A, Nakayama H, Yangida M, Ogawa H, Iwabuchi K (2009) Role of very long fatty acid-containing glycosphingolipids in membrane organization and cell signaling: the model of lactosylceramide in neutrophils. Glycoconj J 26:615–621

    Article  CAS  PubMed  Google Scholar 

  101. Nakayama H, Kurihara H, Morita YS, Kinoshita T, Mauri L, Prinetti A, Sonnino S, Yokoyama N, Ogawa H, Takamori K, Iwabuchi K (2016) Lipoarabinomannan binding to lactosylceramide in lipid rafts is essential for the phagocytosis of mycobacteria by human neutrophils. Sci Signal 9:ra101

    Article  PubMed  CAS  Google Scholar 

  102. Izawa K, Maehara A, Isobe M, Yasuda Y, Urai M, Hoshino Y, Ueno K, Matsukawa T, Takahashi M, Kaitani A, Shiba E, Takamori A, Uchida S, Uchida K, Maeda K, Nakano N, Yamanishi Y, Oki T, Voehringer D, Roers A, Nakae S, Ishikawa J, Kinjo Y, Shimizu T, Ogawa H, Okumura K, Kitamura T, Kitaura J (2017) Disrupting ceramide-CD300f interaction prevents septic peritonitis by stimulating neutrophil recruitment. Sci Rep 7:4298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Shiba E, Izawa K, Kaitani A, Isobe M, Maehara A, Uchida K, Maeda K, Nakano N, Ogawa H, Okumura K, Kitamura T, Shimizu T, Kitaura J (2017) Ceramide-CD300f binding inhibits lipopolysaccharide-induced skin inflammation. J Biol Chem 292:2924–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Izawa K, Yamanishi Y, Maehara A, Takahashi M, Isobe M, Ito S, Kaitani A, Matsukawa T, Matsuoka T, Nakahara F, Oki T, Kiyonari H, Abe T, Okumura K, Kitamura T, Kitaura J (2012) The receptor LMIR3 negatively regulates mast cell activation and allergic responses by binding to extracellular ceramide. Immunity 37:827–839

    Article  CAS  PubMed  Google Scholar 

  105. Matsukawa T, Izawa K, Isobe M, Takahashi M, Maehara A, Yamanishi Y, Kaitani A, Okumura K, Teshima T, Kitamura T, Kitaura J (2016) Ceramide-CD300f binding suppresses experimental colitis by inhibiting ATP-mediated mast cell activation. Gut 65:777–787

    Article  CAS  PubMed  Google Scholar 

  106. Kawa S, Kimura S, Hakomori S, Igarashi Y (1997) Inhibition of chemotactic motility and trans-endothelial migration of human neutrophils by sphingosine 1-phosphate. FEBS Lett 420:196–200

    Article  CAS  PubMed  Google Scholar 

  107. Chandru H, Boggaram V (2007) The role of sphingosine 1-phosphate in the TNF-alpha induction of IL-8 gene expression in lung epithelial cells. Gene 391:150–160

    Article  CAS  PubMed  Google Scholar 

  108. Baudiss K, de Paula Vieira R, Cicko S, Ayata K, Hossfeld M, Ehrat N, Gomez-Munoz A, Eltzschig HK, Idzko M (2016) C1P attenuates lipopolysaccharide-induced acute lung injury by preventing NF-kappaB activation in neutrophils. J Immunol (Baltimore, Md: 1950) 196:2319–2326

    Article  CAS  Google Scholar 

  109. Italiani P, Boraschi D (2015) New insights into tissue macrophages: from their origin to the development of memory. Immune Netw 15:167–176

    Article  PubMed  PubMed Central  Google Scholar 

  110. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stout RD, Suttles J (2004) Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 76:509–513

    Article  CAS  PubMed  Google Scholar 

  113. Bhargava P, Lee CH (2012) Role and function of macrophages in the metabolic syndrome. Biochem J 442:253–262

    Article  CAS  PubMed  Google Scholar 

  114. Prieur X, Roszer T, Ricote M (2010) Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome. Biochim Biophys Acta 1801:327–337

    Article  CAS  PubMed  Google Scholar 

  115. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    Article  CAS  PubMed  Google Scholar 

  116. Beutler B, Hoebe K, Georgel P, Tabeta K, Du X (2005) Genetic analysis of innate immunity: identification and function of the TIR adapter proteins. Adv Exp Med Biol 560:29–39

    Article  CAS  PubMed  Google Scholar 

  117. Andreyev AY, Fahy E, Guan Z, Kelly S, Li X, McDonald JG, Milne S, Myers D, Park H, Ryan A, Thompson BM, Wang E, Zhao Y, Brown HA, Merrill AH, Raetz CR, Russell DW, Subramaniam S, Dennis EA (2010) Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res 51:2785–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dennis EA, Deems RA, Harkewicz R, Quehenberger O, Brown HA, Milne SB, Myers DS, Glass CK, Hardiman G, Reichart D, Merrill AH Jr, Sullards MC, Wang E, Murphy RC, Raetz CR, Garrett TA, Guan Z, Ryan AC, Russell DW, McDonald JG, Thompson BM, Shaw WA, Sud M, Zhao Y, Gupta S, Maurya MR, Fahy E, Subramaniam S (2010) A mouse macrophage lipidome. J Biol Chem 285:39976–39985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sims K, Haynes CA, Kelly S, Allegood JC, Wang E, Momin A, Leipelt M, Reichart D, Glass CK, Sullards MC, Merrill AH Jr (2010) Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. J Biol Chem 285:38568–38579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schilling JD, Machkovech HM, He L, Sidhu R, Fujiwara H, Weber K, Ory DS, Schaffer JE (2013) Palmitate and lipopolysaccharide trigger synergistic ceramide production in primary macrophages. J Biol Chem 288:2923–2932

    Article  CAS  PubMed  Google Scholar 

  121. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, Brickey WJ, Ting JP (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12:408–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Camell CD, Nguyen KY, Jurczak MJ, Christian BE, Shulman GI, Shadel GS, Dixit VD (2015) Macrophage-specific de novo synthesis of ceramide is dispensable for Inflammasome-driven inflammation and insulin resistance in obesity. J Biol Chem 290:29402–29413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Serbulea V, Upchurch CM, Ahern KW, Bories G, Voigt P, DeWeese DE, Meher AK, Harris TE, Leitinger N (2018) Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Mol Metabol 7:23–34

    Article  CAS  Google Scholar 

  124. Hundal RS, Gomez-Munoz A, Kong JY, Salh BS, Marotta A, Duronio V, Steinbrecher UP (2003) Oxidized low density lipoprotein inhibits macrophage apoptosis by blocking ceramide generation, thereby maintaining protein kinase B activation and Bcl-XL levels. J Biol Chem 278:24399–24408

    Article  CAS  PubMed  Google Scholar 

  125. Aflaki E, Doddapattar P, Radovic B, Povoden S, Kolb D, Vujic N, Wegscheider M, Koefeler H, Hornemann T, Graier WF, Malli R, Madeo F, Kratky D (2012) C16 ceramide is crucial for triacylglycerol-induced apoptosis in macrophages. Cell Death Dis 3:e280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang SW, Hojabrpour P, Zhang P, Kolesnick RN, Steinbrecher UP, Gomez-Munoz A, Duronio V (2015) Regulation of ceramide generation during macrophage apoptosis by ASMase and de novo synthesis. Biochim Biophys Acta 1851:1482–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang Y, Rao E, Zeng J, Hao J, Sun Y, Liu S, Sauter ER, Bernlohr DA, Cleary MP, Suttles J, Li B (2017) Adipose fatty acid binding protein promotes saturated fatty acid-induced macrophage cell death through enhancing ceramide production. J Immunol (Baltimore, Md: 1950) 198:798–807

    Article  CAS  Google Scholar 

  128. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5:167–179

    Article  CAS  PubMed  Google Scholar 

  129. Nelson DH, Murray DK (1986) Sphingolipids inhibit insulin and phorbol ester stimulated uptake of 2-deoxyglucose. Biochem Biophys Res Commun 138:463–467

    Article  CAS  PubMed  Google Scholar 

  130. Kanety H, Hemi R, Papa MZ, Karasik A (1996) Sphingomyelinase and ceramide suppress insulin-induced tyrosine phosphorylation of the insulin receptor substrate-1. J Biol Chem 271:9895–9897

    Article  CAS  PubMed  Google Scholar 

  131. Peraldi P, Hotamisligil GS, Buurman WA, White MF, Spiegelman BM (1996) Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J Biol Chem 271:13018–13022

    Article  CAS  PubMed  Google Scholar 

  132. Schmitz-Peiffer C, Craig DL, Biden TJ (1999) Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 274:24202–24210

    Article  CAS  PubMed  Google Scholar 

  133. Summers SA, Garza LA, Zhou H, Birnbaum MJ (1998) Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol 18:5457–5464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang CN, O’Brien L, Brindley DN (1998) Effects of cell-permeable ceramides and tumor necrosis factor-alpha on insulin signaling and glucose uptake in 3T3-L1 adipocytes. Diabetes 47:24–31

    Article  CAS  PubMed  Google Scholar 

  135. Zhou H, Summers SA, Birnbaum MJ, Pittman RN (1998) Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem 273:16568–16575

    Article  CAS  PubMed  Google Scholar 

  136. Zinda MJ, Vlahos CJ, Lai MT (2001) Ceramide induces the dephosphorylation and inhibition of constitutively activated Akt in PTEN negative U87mg cells. Biochem Biophys Res Commun 280:1107–1115

    Article  CAS  PubMed  Google Scholar 

  137. Salinas M, Lopez-Valdaliso R, Martin D, Alvarez A, Cuadrado A (2000) Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol Cell Neurosci 15:156–169

    Article  CAS  PubMed  Google Scholar 

  138. Schubert KM, Scheid MP, Duronio V (2000) Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem 275:13330–13335

    Article  CAS  PubMed  Google Scholar 

  139. Frangioudakis G, Diakanastasis B, Liao BQ, Saville JT, Hoffman NJ, Mitchell TW, Schmitz-Peiffer C (2013) Ceramide accumulation in L6 skeletal muscle cells due to increased activity of ceramide synthase isoforms has opposing effects on insulin action to those caused by palmitate treatment. Diabetologia 56:2697–2701

    Article  CAS  PubMed  Google Scholar 

  140. Stratford S, Hoehn KL, Liu F, Summers SA (2004) Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem 279:36608–36615

    Article  CAS  PubMed  Google Scholar 

  141. Teruel T, Hernandez R, Lorenzo M (2001) Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes 50:2563–2571

    Article  CAS  PubMed  Google Scholar 

  142. Chen CL, Lin CF, Chang WT, Huang WC, Teng CF, Lin YS (2008) Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway. Blood 111:4365–4374

    Article  CAS  PubMed  Google Scholar 

  143. Hage Hassan R, Pacheco de Sousa AC, Mahfouz R, Hainault I, Blachnio-Zabielska A, Bourron O, Koskas F, Gorski J, Ferre P, Foufelle F, Hajduch E (2016) Sustained action of ceramide on THE insulin signaling pathway in muscle cells: implication of the double-stranded RNA-activated protein kinase. J Biol Chem 291:3019–3029

    Article  PubMed  CAS  Google Scholar 

  144. Adams JM 2nd, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53:25–31

    Article  CAS  PubMed  Google Scholar 

  145. Blachnio-Zabielska AU, Chacinska M, Vendelbo MH, Zabielski P (2016) The crucial role of C18-Cer in fat-induced skeletal muscle insulin resistance. Cell Physiol Biochem 40:1207–1220

    Article  CAS  PubMed  Google Scholar 

  146. Coen PM, Dube JJ, Amati F, Stefanovic-Racic M, Ferrell RE, Toledo FG, Goodpaster BH (2010) Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content. Diabetes 59:80–88

    Article  CAS  PubMed  Google Scholar 

  147. Fillmore N, Keung W, Kelly SE, Proctor SD, Lopaschuk GD, Ussher JR (2015) Accumulation of ceramide in slow-twitch muscle contributes to the development of insulin resistance in the obese JCR:LA-cp rat. Exp Physiol 100:730–741

    Article  CAS  PubMed  Google Scholar 

  148. Pickersgill L, Litherland GJ, Greenberg AS, Walker M, Yeaman SJ (2007) Key role for ceramides in mediating insulin resistance in human muscle cells. J Biol Chem 282:12583–12589

    Article  CAS  PubMed  Google Scholar 

  149. Turpin SM, Lancaster GI, Darby I, Febbraio MA, Watt MJ (2006) Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance. Am J Physiol Endocrinol Metab 291:E1341–E1350

    Article  CAS  PubMed  Google Scholar 

  150. JeBailey L, Wanono O, Niu W, Roessler J, Rudich A, Klip A (2007) Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells. Diabetes 56:394–403

    Article  CAS  PubMed  Google Scholar 

  151. Bruce CR, Risis S, Babb JR, Yang C, Kowalski GM, Selathurai A, Lee-Young RS, Weir JM, Yoshioka K, Takuwa Y, Meikle PJ, Pitson SM, Febbraio MA (2012) Overexpression of sphingosine kinase 1 prevents ceramide accumulation and ameliorates muscle insulin resistance in high-fat diet-fed mice. Diabetes 61:3148–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lahiri S, Park H, Laviad EL, Lu X, Bittman R, Futerman AH (2009) Ceramide synthesis is modulated by the sphingosine analog FTY720 via a mixture of uncompetitive and noncompetitive inhibition in an acyl-CoA chain length-dependent manner. J Biol Chem 284:16090–16098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bruce CR, Risis S, Babb JR, Yang C, Lee-Young RS, Henstridge DC, Febbraio MA (2013) The sphingosine-1-phosphate analog FTY720 reduces muscle ceramide content and improves glucose tolerance in high fat-fed male mice. Endocrinology 154:65–76

    Article  CAS  PubMed  Google Scholar 

  154. Ussher JR, Koves TR, Cadete VJ, Zhang L, Jaswal JS, Swyrd SJ, Lopaschuk DG, Proctor SD, Keung W, Muoio DM, Lopaschuk GD (2010) Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 59:2453–2464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Raichur S, Wang ST, Chan PW, Li Y, Ching J, Chaurasia B, Dogra S, Ohman MK, Takeda K, Sugii S, Pewzner-Jung Y, Futerman AH, Summers SA (2014) CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab 20:687–695

    Article  CAS  PubMed  Google Scholar 

  156. Turpin SM, Nicholls HT, Willmes DM, Mourier A, Brodesser S, Wunderlich CM, Mauer J, Xu E, Hammerschmidt P, Bronneke HS, Trifunovic A, LoSasso G, Wunderlich FT, Kornfeld JW, Bluher M, Kronke M, Bruning JC (2014) Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 20:678–686

    Article  CAS  PubMed  Google Scholar 

  157. Stiban J, Perera M (2015) Very long chain ceramides interfere with C16-ceramide-induced channel formation: A plausible mechanism for regulating the initiation of intrinsic apoptosis. Biochim Biophys Acta 1848:561–567

    Article  CAS  PubMed  Google Scholar 

  158. Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S, Knotts TA, Shui G, Clegg DJ, Wenk MR, Pagliassotti MJ, Scherer PE, Summers SA (2011) Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 121:1858–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Galbo T, Perry RJ, Jurczak MJ, Camporez JP, Alves TC, Kahn M, Guigni BA, Serr J, Zhang D, Bhanot S, Samuel VT, Shulman GI (2013) Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo. Proc Natl Acad Sci U S A 110:12780–12785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ferrara JLM, Chaudhry MS (2018) GVHD: biology matters. Blood advances 2:3411–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rotolo JA, Stancevic B, Lu SX, Zhang J, Suh D, King CG, Kappel LW, Murphy GF, Liu C, Fuks Z, van den Brink MR, Kolesnick R (2009) Cytolytic T cells induce ceramide-rich platforms in target cell membranes to initiate graft-versus-host disease. Blood 114:3693–3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sofi MH, Heinrichs J, Dany M, Nguyen H, Dai M, Bastian D, Schutt S, Wu Y, Daenthanasanmak A, Gencer S, Zivkovic A, Szulc Z, Stark H, Liu C, Chang YJ, Ogretmen B, Yu XZ (2017) Ceramide synthesis regulates T cell activity and GVHD development. JCI Insight 2

    Google Scholar 

  164. Schiffmann S, Hartmann D, Fuchs S, Birod K, Ferreiros N, Schreiber Y, Zivkovic A, Geisslinger G, Grosch S, Stark H (2012b) Inhibitors of specific ceramide synthases. Biochimie 94:558–565

    Article  CAS  PubMed  Google Scholar 

  165. Stoffel B, Bauer P, Nix M, Deres K, Stoffel W (1998) Ceramide-independent CD28 and TCR signaling but reduced IL-2 secretion in T cells of acid sphingomyelinase-deficient mice. Eur J Immunol 28:874–880

    Article  CAS  PubMed  Google Scholar 

  166. Bai A, Kokkotou E, Zheng Y, Robson SC (2015) Role of acid sphingomyelinase bioactivity in human CD4+ T-cell activation and immune responses. Cell Death Dis 6:e1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Manoochehri Khoshinani H, Afshar S, Najafi R (2016) Hypoxia: A double-edged sword in cancer therapy. Cancer Investig 34:536–545

    Article  CAS  Google Scholar 

  168. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Renner K, Singer K, Koehl GE, Geissler EK, Peter K, Siska PJ, Kreutz M (2017) Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol 8:248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, Barbour SE, Milstien S, Spiegel S (2008) Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J 22:2629–2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Weigert A, Johann AM, von Knethen A, Schmidt H, Geisslinger G, Brune B (2006) Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood 108:1635–1642

    Article  CAS  PubMed  Google Scholar 

  172. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  174. Hughes JE, Srinivasan S, Lynch KR, Proia RL, Ferdek P, Hedrick CC (2008) Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ Res 102:950–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Weigert A, Tzieply N, von Knethen A, Johann AM, Schmidt H, Geisslinger G, Brune B (2007) Tumor cell apoptosis polarizes macrophages role of sphingosine-1-phosphate. Mol Biol Cell 18:3810–3819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Weigert A, Schiffmann S, Sekar D, Ley S, Menrad H, Werno C, Grosch S, Geisslinger G, Brune B (2009) Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an anti-inflammatory phenotype. Int J Cancer 125:2114–2121

    Article  CAS  PubMed  Google Scholar 

  177. Li G, Liu D, Kimchi ET, Kaifi JT, Qi X, Manjunath Y, Liu X, Deering T, Avella DM, Fox T, Rockey DC, Schell TD, Kester M, Staveley-O’Carroll KF (2018) Nanoliposome C6-ceramide increases the anti-tumor immune response and slows growth of liver tumors in mice. Gastroenterology 154:1024–1036.e1029

    Article  CAS  PubMed  Google Scholar 

  178. Liu F, Li X, Lu C, Bai A, Bielawski J, Bielawska A, Marshall B, Schoenlein PV, Lebedyeva IO, Liu K (2016) Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget 7:83907–83925

    PubMed  PubMed Central  Google Scholar 

  179. Hollmann C, Werner S, Avota E, Reuter D, Japtok L, Kleuser B, Gulbins E, Becker KA, Schneider-Schaulies J, Beyersdorf N (2016) Inhibition of acid Sphingomyelinase allows for selective targeting of CD4+ conventional versus Foxp3+ regulatory T cells. J Immunol (Baltimore, Md: 1950) 197:3130–3141

    Article  CAS  Google Scholar 

  180. Zhou Y, Salker MS, Walker B, Munzer P, Borst O, Gawaz M, Gulbins E, Singh Y, Lang F (2016) Acid Sphingomyelinase (ASM) is a negative regulator of regulatory T cell (Treg) development. Cell Physiol Biochem 39:985–995

    Article  CAS  PubMed  Google Scholar 

  181. Reich DS, Lucchinetti CF, Calabresi PA (2018) Multiple Sclerosis. N Engl J Med 378:169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Schiffmann S, Ferreiros N, Birod K, Eberle M, Schreiber Y, Pfeilschifter W, Ziemann U, Pierre S, Scholich K, Grosch S, Geisslinger G (2012a) Ceramide synthase 6 plays a critical role in the development of experimental autoimmune encephalomyelitis. J Immunol (Baltimore, Md: 1950) 188:5723–5733

    Article  CAS  Google Scholar 

  183. Eberle M, Ebel P, Wegner MS, Mannich J, Tafferner N, Ferreiros N, Birod K, Schreiber Y, Krishnamoorthy G, Willecke K, Geisslinger G, Grosch S, Schiffmann S (2014) Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent. Biochem Pharmacol 92:326–335

    Article  CAS  PubMed  Google Scholar 

  184. Eberle M, Ebel P, Mayer CA, Barthelmes J, Tafferner N, Ferreiros N, Ulshofer T, Henke M, Foerch C, de Bazo AM, Grosch S, Geisslinger G, Willecke K, Schiffmann S (2015) Exacerbation of experimental autoimmune encephalomyelitis in ceramide synthase 6 knockout mice is associated with enhanced activation/migration of neutrophils. Immunol Cell Biol 93:825–836

    Article  CAS  PubMed  Google Scholar 

  185. Becker KA, Halmer R, Davies L, Henry BD, Ziobro-Henry R, Decker Y, Liu Y, Gulbins E, Fassbender K, Walter S (2017) Blockade of experimental multiple sclerosis by inhibition of the acid Sphingomyelinase/ceramide system. Neurosignals 25:88–97

    Article  PubMed  Google Scholar 

  186. Sharma S, Mathur AG, Pradhan S, Singh DB, Gupta S (2011) Fingolimod (FTY720): first approved oral therapy for multiple sclerosis. J Pharmacol Pharmacother 2:49–51

    Article  PubMed  PubMed Central  Google Scholar 

  187. Singh M, Cugati G, Singh P, Singh AK (2011) Fingolimod: the first oral drug approved by food and drug administration; A breakthrough in treatment of multiple sclerosis. J Pharm Bioallied Sci 3:460–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Brinkmann V, Cyster JG, Hla T (2004) FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 4:1019–1025

    Article  CAS  Google Scholar 

  189. Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, Bruns C, Prieschl E, Baumruker T, Hiestand P, Foster CA, Zollinger M, Lynch KR (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277:21453–21457

    Article  CAS  PubMed  Google Scholar 

  190. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360

    Article  CAS  PubMed  Google Scholar 

  191. Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, Thornton R, Shei GJ, Card D, Keohane C, Rosenbach M, Hale J, Lynch CL, Rupprecht K, Parsons W, Rosen H (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science (New York, NY) 296:346–349

    Article  CAS  Google Scholar 

  192. Baumgart DC, Sandborn WJ (2012) Crohn’s disease. Lancet (London, England) 380:1590–1605

    Article  Google Scholar 

  193. Danese S, Fiocchi C (2011) Ulcerative colitis. N Engl J Med 365:1713–1725

    Article  CAS  PubMed  Google Scholar 

  194. De Palma C, Meacci E, Perrotta C, Bruni P, Clementi E (2006) Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arterioscler Thromb Vasc Biol 26:99–105

    Article  PubMed  CAS  Google Scholar 

  195. Pettus BJ, Bielawski J, Porcelli AM, Reames DL, Johnson KR, Morrow J, Chalfant CE, Obeid LM, Hannun YA (2003) The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. FASEB J 17:1411–1421

    Article  CAS  PubMed  Google Scholar 

  196. Breese EJ, Michie CA, Nicholls SW, Murch SH, Williams CB, Domizio P, Walker-Smith JA, MacDonald TT (1994) Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterology 106:1455–1466

    Article  CAS  PubMed  Google Scholar 

  197. Ngo B, Farrell CP, Barr M, Wolov K, Bailey R, Mullin JM, Thornton JJ (2010) Tumor necrosis factor blockade for treatment of inflammatory bowel disease: efficacy and safety. Curr Mol Pharmacol 3:145–152

    Article  CAS  PubMed  Google Scholar 

  198. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118:560–570

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Spiegel S, Foster D, Kolesnick R (1996) Signal transduction through lipid second messengers. Curr Opin Cell Biol 8:159–167

    Article  CAS  PubMed  Google Scholar 

  200. Sakata A, Ochiai T, Shimeno H, Hikishima S, Yokomatsu T, Shibuya S, Toda A, Eyanagi R, Soeda S (2007) Acid sphingomyelinase inhibition suppresses lipopolysaccharide-mediated release of inflammatory cytokines from macrophages and protects against disease pathology in dextran sulphate sodium-induced colitis in mice. Immunology 122:54–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Daniel C, Sartory N, Zahn N, Geisslinger G, Radeke HH, Stein JM (2007) FTY720 ameliorates Th1-mediated colitis in mice by directly affecting the functional activity of CD4+CD25+ regulatory T cells. J Immunol (Baltimore, Md: 1950) 178:2458–2468

    Article  CAS  Google Scholar 

  202. Song J, Matsuda C, Kai Y, Nishida T, Nakajima K, Mizushima T, Kinoshita M, Yasue T, Sawa Y, Ito T (2008) A novel sphingosine 1-phosphate receptor agonist, 2-amino-2-propanediol hydrochloride (KRP-203), regulates chronic colitis in interleukin-10 gene-deficient mice. J Pharmacol Exp Ther 324:276–283

    Article  CAS  PubMed  Google Scholar 

  203. Maines LW, Fitzpatrick LR, French KJ, Zhuang Y, Xia Z, Keller SN, Upson JJ, Smith CD (2008) Suppression of ulcerative colitis in mice by orally available inhibitors of sphingosine kinase. Dig Dis Sci 53:997–1012

    Article  CAS  PubMed  Google Scholar 

  204. Pulkoski-Gross MJ, Uys JD, Orr-Gandy KA, Coant N, Bialkowska AB, Szulc ZM, Bai A, Bielawska A, Townsend DM, Hannun YA, Obeid LM, Snider AJ (2017) Novel sphingosine kinase-1 inhibitor, LCL351, reduces immune responses in murine DSS-induced colitis. Prostaglandins Other Lipid Mediat 130:47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Snider AJ, Kawamori T, Bradshaw SG, Orr KA, Gilkeson GS, Hannun YA, Obeid LM (2009) A role for sphingosine kinase 1 in dextran sulfate sodium-induced colitis. FASEB J 23:143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Danese S, Furfaro F, Vetrano S (2018) Targeting S1P in inflammatory bowel disease: new avenues for modulating intestinal leukocyte migration. J Crohns Colitis 12:S678–s686

    Article  PubMed  Google Scholar 

  207. Peyrin-Biroulet L, Christopher R, Behan D, Lassen C (2017) Modulation of sphingosine-1-phosphate in inflammatory bowel disease. Autoimmun Rev 16:495–503

    Article  CAS  PubMed  Google Scholar 

  208. Kim YR, Volpert G, Shin KO, Kim SY, Shin SH, Lee Y, Sung SH, Lee YM, Ahn JH, Pewzner-Jung Y, Park WJ, Futerman AH, Park JW (2017) Ablation of ceramide synthase 2 exacerbates dextran sodium sulphate-induced colitis in mice due to increased intestinal permeability. J Cell Mol Med 21:3565–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Oertel S, Scholich K, Weigert A, Thomas D, Schmetzer J, Trautmann S, Wegner MS, Radeke HH, Filmann N, Brune B, Geisslinger G, Tegeder I, Grosch S (2017) Ceramide synthase 2 deficiency aggravates AOM-DSS-induced colitis in mice: role of colon barrier integrity. Cell Mol Life Sci CMLS 74:3039–3055

    Article  CAS  PubMed  Google Scholar 

  210. Helke K, Angel P, Lu P, Garrett-Mayer E, Ogretmen B, Drake R, Voelkel-Johnson C (2018) Ceramide synthase 6 deficiency enhances inflammation in the DSS model of colitis. Sci Rep 8:1627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indepted to Ms. Yara Khodour for her diligent redrawing of Fig. 15.2 and her full chapter proof. Dr. Johnny Stiban acknowledges the receipt of two grants from Birzeit University that allowed him to pursue this endeavor (Grant #240193 and #241109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny Stiban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albeituni, S., Stiban, J. (2019). Roles of Ceramides and Other Sphingolipids in Immune Cell Function and Inflammation. In: Honn, K., Zeldin, D. (eds) The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases. Advances in Experimental Medicine and Biology, vol 1161. Springer, Cham. https://doi.org/10.1007/978-3-030-21735-8_15

Download citation

Publish with us

Policies and ethics