Skip to main content

Drought Stress in Chickpea: Physiological, Breeding, and Omics Perspectives

  • Chapter
  • First Online:
Book cover Recent Approaches in Omics for Plant Resilience to Climate Change

Abstract

Chickpea (Cicer arietinum L.) is a highly rich source of protein and is documented as the second most valuable food legume worldwide. In rain-fed areas, the chickpea productivity is strictly threatened by abiotic stress; notably among them is terminal drought stress. Drought stress causes reduction in photosynthesis and stomatal conductance that leads to the biosynthesis of ABA. Consequently, the plant faces oxidative stress, which is produced by ROS: H2O2, O2, O, and HO. As a result, the plant defense system is activated in the form of antioxidants (CAT, APX, POD, etc.) and scavengers (e.g., proline). In this scenario, the integration of conventional breeding with omics approaches is the ideal approach to increase the worth of the breeding program. The breeding program based on omics approaches, that is, genomics, transcriptomics, proteomics, metabolomics, ionomics, and phenomics, is the quickest and efficient way to develop drought-tolerant chickpea accessions. Moreover, the availability of high-throughput sequencing tools accelerates the working efficiency and quality of these omics approaches. Drought-responsive genes, regulatory TFs, and metabolic pathways can be identified through RNA-Seq. The worth and efficiency of the breeding program will be increased by exploiting the omics-based breeding strategies in chickpea against drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali L, Deokar A, Caballo C, Tar’an B, Gil J, Chen W, Millan T, Rubio J (2016) Fine mapping for double podding gene in chickpea. Theor Appl Genet 129(1):77–86

    Article  CAS  PubMed  Google Scholar 

  • Allard R (1960) Principles of plant breeding, vol 36. John Willey and Sons, Inc, New York, NY

    Google Scholar 

  • Almeselmani M, Deshmukh P, Sairam R, Kushwaha S, Singh T (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171(3):382–388

    Article  CAS  PubMed  Google Scholar 

  • Armand N, Amiri H, Ismaili A (2016) Interaction of methanol spray and water‐deficit stress on photosynthesis and biochemical characteristics of Phaseolus vulgaris L. cv. Sadry. Photochem Photobiol 92(1):102–110

    Article  CAS  PubMed  Google Scholar 

  • Badhan S, Kole P, Ball A, Mantri N (2018) RNA sequencing of leaf tissues from two contrasting chickpea genotypes reveals mechanisms for drought tolerance. Plant Physiol Biochem 129:295–304

    Article  CAS  PubMed  Google Scholar 

  • Baginsky S, Hennig L, Zimmermann P, Gruissem W (2010) Gene expression analysis, proteomics, and network discovery. Plant Physiol 152(2):402–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu P, Ali M, Chaturvedi S (2007a) Osmotic adjustment increases water uptake, remobilization of assimilates and maintains photosynthesis in chickpea under drought. Indian J Exp Biol 45(3):261–267

    CAS  PubMed  Google Scholar 

  • Basu P, Berger J, Turner N, Chaturvedi S, Ali M, Siddique K (2007b) Osmotic adjustment of chickpea (Cicer arietinum) is not associated with changes in carbohydrate composition or leaf gas exchange under drought. Ann Appl Biol 150(2):217–225

    Article  CAS  Google Scholar 

  • Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N (2007) Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics 6(11):1868–1884

    Article  CAS  PubMed  Google Scholar 

  • Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt M-M, Klein PE (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58(5):699–720

    Article  CAS  PubMed  Google Scholar 

  • Çevik S, Akpinar G, Yildizli A, Kasap M, Karaosmanoğlu K, Ünyayar S (2019) Comparative physiological and leaf proteome analysis between drought-tolerant chickpea Cicer reticulatum and drought-sensitive chickpea C. arietinum. J Biosci (Bangalore) 44(1):20

    Google Scholar 

  • Chandra S, Buhariwalla H, Kashiwagi J, Harikrishna S (2004) Identifying QTL-linked markers in marker-deficient crops. Markers 2(38.1):235

    Google Scholar 

  • Chattopadhyay A, Chakraborty S, Bhushan D, Chakraborty N, Datta A, Choudhary MK, Pandey A (2006) Extracellular matrix proteome of chickpea (Cicer arietinum) illustrates pathway abundance, novel protein functions and evolutionary perspect. Am Chem Soc 5(7):1711–1720

    Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89(7):907–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collard BC, Mackill DJ (2007) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B Biol Sci 363(1491):557–572

    Article  CAS  Google Scholar 

  • Crossa J, Perez P, Hickey J, Burgueño J, Ornella L, Cerón-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112(1):48

    Article  CAS  PubMed  Google Scholar 

  • Dalvi U, Naik R, Lokhande P (2018) Antioxidant defense system in chickpea against drought stress at pre-and post-flowering stages. Indian J Plant Physiol 23(1):16–23

    Article  CAS  Google Scholar 

  • Das A, Eldakak M, Paudel B, Kim D-W, Hemmati H, Basu C, Rohila JS (2016) Leaf proteome analysis reveals prospective drought and heat stress response mechanisms in soybean. Bio Med Res Int 2016:6021047

    Google Scholar 

  • Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju N, Vadez V, Varshney RK, Srinivasan R (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and-susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11(1):70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldakak M, Milad SI, Nawar AI, Rohila JS (2013) Proteomics: a biotechnology tool for crop improvement. Front Plant Sci 4:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang X, Turner NC, Yan G, Li F, Siddique KH (2009) Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J Exp Bot 61(2):335–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farooq M, Gogoi N, Barthakur S, Baroowa B, Bharadwaj N, Alghamdi S, Siddique K (2017) Drought stress in grain legumes during reproduction and grain filling. J Agric Crop Sci 203(2):81–102

    Article  Google Scholar 

  • Flowers TJ, Gaur PM, Gowda CL, Krishnamurthy L, Samineni S, Siddique KH, Turner NC, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 33(4):490–509

    Article  CAS  PubMed  Google Scholar 

  • Gao W-R, Wang X-S, Liu Q-Y, Peng H, Chen C, Li J-G, Zhang J-S, Hu S-N, Ma H (2008) Comparative analysis of ESTs in response to drought stress in chickpea (C. arietinum L.). Biochem Biophys Res Commun 376(3):578–583

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M (2011) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol 156(4):1661–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg R, Bhattacharjee A, Jain M (2015) Genome-scale transcriptomic insights into molecular aspects of abiotic stress responses in chickpea. Plant Mol Biol Rep 33(3):388–400

    Article  CAS  Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype-and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gayen D, Gayali S, Barua P, Lande NV, Varshney S, Sengupta S, Chakraborty S, Chakraborty N (2019) Dehydration-induced proteomic landscape of mitochondria in chickpea reveals large-scale coordination of key biological processes. J Proteomics 192:267–279

    Article  CAS  PubMed  Google Scholar 

  • Govt. of Pakistan (2016–2017) Economic survey of Pakistan. Ministry of Finance, Economic Advisors’s Wing, Islamabad

    Google Scholar 

  • Gupta P, Rustgi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics 4(3):139–162

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Rathore A, Sharma S, Saini R (2000) Response of chickpea cultivars to water stress. Indian J Plant Physiol 5(3):274–276

    Google Scholar 

  • Gupta S, Nawaz K, Parween S, Roy R, Sahu K, Kumar Pole A, Khandal H, Srivastava R, Kumar Parida S, Chattopadhyay D (2016) Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Res 24(1):1–10

    Google Scholar 

  • Haake V, Cook D, Riechmann J, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130(2):639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156(1-2):1–13

    Article  Google Scholar 

  • Hamanishi ET, Thomas BR, Campbell MM (2012) Drought induces alterations in the stomatal development program in Populus. J Exp Bot 63(13):4959–4971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamwieh A, Imtiaz M, Malhotra R (2013) Multi-environment QTL analyses for drought-related traits in a recombinant inbred population of chickpea (Cicer arientinum L.). Theor Appl Genet 126(4):1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Haq M (2009) Development of mutant varieties of crop plants at NIAB and the impact on agricultural production in Pakistan. Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 61–64

    Google Scholar 

  • Harris D, Tripathi R, Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. Direct seeding: research strategies and opportunities. International Research Institute, Manila, pp 231–240

    Google Scholar 

  • Hawkes J (1977) The importance of wild germplasm in plant breeding. Euphytica 26(3):615–621

    Article  Google Scholar 

  • Hayes B, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    PubMed  PubMed Central  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain A, Goddard M (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92(2):433–443

    Article  CAS  PubMed  Google Scholar 

  • Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J (2013) The genomic signature of crop-wild introgression in maize. PLoS Genet 9(5):e1003477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Tanveer R, Mustafa G, Farooq M, Amin I, Mansoor S (2019) Comparative phylogenetic analysis of aquaporins provides insight into the gene family expansion and evolution in plants and their role in drought tolerant and susceptible chickpea cultivars. Genomics. https://doi.org/10.1016/j.ygeno.2019.02.005

  • Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PK, Nguyen H, Sutton T, Varshney RK (2015) Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genomics 290(2):559–571

    Article  CAS  PubMed  Google Scholar 

  • Jain D, Chattopadhyay D (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biol 10(1):24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G (2013) A draft genome sequence of the pulse crop chickpea (C icer arietinum L.). Plant J 74(5):715–729

    Article  CAS  PubMed  Google Scholar 

  • Jamalabadi JG, Saidi A, Karami E, Kharkesh M, Talebi R (2013) Molecular mapping and characterization of genes governing time to flowering, seed weight, and plant height in an intraspecific genetic linkage map of chickpea (Cicer arietinum). Biochem Genet 51(5-6):387–397

    Article  CAS  PubMed  Google Scholar 

  • Jha UC (2018) Current advances in chickpea genomics: applications and future perspectives. Plant Cell Rep 37:947–965

    Article  CAS  PubMed  Google Scholar 

  • Joseph B, Jini D, Sujatha S (2011) Development of salt stress-tolerant plants by gene manipulation of antioxidant enzymes. Asian J Agric Res 5(1):17–27

    CAS  Google Scholar 

  • Jukanti A, Gaur P, Gowda C, Chibbar R (2012) Chickpea: nutritional properties and its benefits. Br J Nutr 108:S11–S26

    Article  CAS  PubMed  Google Scholar 

  • Kahraman A, Pandey A, Khan MK, Lindsay D, Moenga S, Vance L, Bergmann E, Carrasquilla-Garcia N, Shin M-G, Chang PL (2017) Distinct subgroups of Cicer echinospermum are associated with hybrid sterility and breakdown in interspecific crosses with cultivated Chickpea. Crop Sci 57(6):3101–3111

    Google Scholar 

  • Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R, Kudapa H, Thudi M, Roorkiwal M, Katta MA, Doddamani D (2015) Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.). Sci Rep 5:15296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalefetoğlu Macar T, Ekmekçi Y (2009) Alterations in photochemical and physiological activities of chickpea (Cicer arietinum L.) cultivars under drought stress. J Agric Crop Sci 195(5):335–346

    Article  CAS  Google Scholar 

  • Kalra N, Chakraborty D, Sharma A, Rai H, Jolly M, Chander S, Kumar PR, Bhadraray S, Barman D, Mittal R (2008) Effect of increasing temperature on yield of some winter crops in northwest India. Curr Sci 94:82–88

    Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Krishna H, Chandra S, Vadez V, Serraj R (2005) Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146(3):213–222

    Article  Google Scholar 

  • Kaur K, Kaur N, Gupta AK, Singh I (2013) Exploration of the antioxidative defense system to characterize chickpea genotypes showing differential response towards water deficit conditions. Plant Growth Regul 70(1):49–60

    Article  CAS  Google Scholar 

  • Khan H, Gul R, Khan N, Naz R, Shah S, Asim N, Latif A (2018) Role of selection indices in ascertaining high yielding drought stress tolerant chickpea (Cicer arietinum L.). J Anim Plant Sci 28(1):146

    Google Scholar 

  • Komatsu S, Mock H-P, Yang P, Svensson B (2013) Application of proteomics for improving crop protection/artificial regulation. Front Plant Sci 4:522

    PubMed  PubMed Central  Google Scholar 

  • Kudapa H, Garg V, Chitikineni A, Varshney RK (2018) The RNA‐Seq‐based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio‐temporal changes associated with growth and development. Plant Cell Environ 41(9):2209–2225

    CAS  PubMed  Google Scholar 

  • Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv Agron 72:107–178

    Article  CAS  Google Scholar 

  • Lestari EG (2016) Combination of somaclonal variation and mutagenesis for crop improvement. J Agro Biogen 8(1):38–44

    Google Scholar 

  • Li Y, Ruperao P, Batley J, Edwards D, Khan T, Colmer TD, Pang J, Siddique KH, Sutton T (2018) Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Front Plant Sci 9:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo L, Xia H, Lu B (2019) Crop breeding for drought resistance. Front Plant Sci 10:314

    Article  PubMed  PubMed Central  Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik P, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4(8):580

    CAS  Google Scholar 

  • Maluszynski M (2001) Officially released mutant varieties - the FAO/IAEA database, vol 65. IAEA, Vienna. https://doi.org/10.1023/A:1010652523463

    Book  Google Scholar 

  • Mashaki KM, Garg V, Ghomi AAN, Kudapa H, Chitikineni A, Nezhad KZ, Yamchi A, Soltanloo H, Varshney RK, Thudi M (2018) RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS One 13(6):e0199774

    Article  CAS  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125(4):625–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell-Olds T (2010) Complex-trait analysis in plants. Genome Biol 11(4):113

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadi A, Habibi D, Rohami M, Mafakheri S (2011) Effect of drought stress on antioxidant enzymes activity of some chickpea cultivars. Am Eur J Agric Env Sci 11(6):782–785

    CAS  Google Scholar 

  • Mohler V, Singrün C (2004) General considerations: marker-assisted selection. Molecular marker systems in plant breeding and crop improvement. Springer, New York, NY, pp 305–317

    Google Scholar 

  • Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9(1):553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mozafari J, Pouresmael M, Najafi F, Khavari-Nejad R, Moradi F (2018) Identification of possible mechanisms of chickpea (Cicer arietinum L.) drought tolerance using cDNA-AFLP. J Agric Sci Technol 7:1303–1317

    Google Scholar 

  • Muruiki R, Kimurto P, Vandez V, Gangarao R, Silim S, Siambi M (2018) Effect of drought stress on yield performance of parental chickpea genotypes in semi-arid tropics. J Life Sci 12(3):159–168

    Google Scholar 

  • Omae H, Kumar A, Egawa Y, Kashiwaba K, Shono M (2005) Midday drop of leaf water content related to drought tolerance in snap bean (Phaseolus vulgaris L.). Plant Prod Sci 8(4):465–467

    Article  Google Scholar 

  • Pagter M, Bragato C, Brix H (2005) Tolerance and physiological responses of Phragmites australis to water deficit. Aquat Bot 81(4):285–299

    Article  Google Scholar 

  • Pang J, Turner NC, Khan T, Du Y-L, Xiong J-L, Colmer TD, Devilla R, Stefanova K, Siddique KH (2016) Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set. J Exp Bot 68(8):1973–1985

    PubMed Central  Google Scholar 

  • Parween S, Nawaz K, Roy R, Pole AK, Suresh BV, Misra G, Jain M, Yadav G, Parida SK, Tyagi AK (2015) An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Sci Rep 5:12806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel PK, Hemantaranjan A (2013) Differential sensitivity of chickpea genotypes to salicylic acid and drought stress during preanthesis: effects on total chlorophyll, phenolics, seed protein and protein profiling. Bioscan 8(2):569–574

    CAS  Google Scholar 

  • Patwardhan A, Semenov S, Schnieder S, Burton I, Magadza C, Oppenheimer M, Pittock B, Rahman A, Smith J, Suarez A (2007) Assessing key vulnerabilities and the risk from climate change. In: Climate change. Cambridge University Press, Cambridge, pp 779–810

    Google Scholar 

  • Pouresmael M, Khavari-Nejad RA, Mozafari J, Najafi F, Moradi F (2013) Efficiency of screening criteria for drought tolerance in chickpea. Arch Agric Soil Sci 59(12):1675–1693

    Article  Google Scholar 

  • Rahbarian R, Khavari-Nejad R, Ganjeali A, Bagheri A, Najafi F (2011) Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biol Cracov Bot 53(1):47–56

    Google Scholar 

  • Rahimizadeh M, Habibi D, Madani H, Mohammadi GN, Mehraban A, Sabet AM (2007) The effect of micronutrients on antioxidant enzymes metabolism in sunflower (helianthus annuus l.) under drought stress. Helia 30(47):167–174

    Article  Google Scholar 

  • Ramamoorthy P, Lakshmanan K, Upadhyaya HD, Vadez V, Varshney RK (2017) Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arietinum L.). Field Crop Res 201:146–161

    Article  Google Scholar 

  • Rehman A, Malhotra R, Bett K, Tar’an B, Bueckert R, Warkentin T (2011) Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. Crop Sci 51(2):450–463

    Article  Google Scholar 

  • Rokhzadi A (2014) Response of chickpea (Cicer arietinum L.) to exogenous salicylic acid and ascorbic acid under vegetative and reproductive drought stress conditions. J App Bot Food Qual 87:80

    Google Scholar 

  • Sachdeva S, Bharadwaj C, Sharma V, Patil B, Soren K, Roorkiwal M, Varshney R, Bhat K (2018) Molecular and phenotypic diversity among chickpea (Cicer arietinum) genotypes as a function of drought tolerance. Crop Pasture Sci 69(2):142–153

    Article  CAS  Google Scholar 

  • Sadras VO, Lake L, Li Y, Farquharson EA, Sutton T (2016) Phenotypic plasticity and its genetic regulation for yield, nitrogen fixation and δ13C in chickpea crops under varying water regimes. J Exp Bot 67(14):4339–4351

    Article  CAS  PubMed  Google Scholar 

  • Salimath P, Toker C, Sandhu J, Kumar J, Suma B, Yadav S, Bahl P (2007) Conventional breeding methods. Chickpea Breeding Management. CAB International, Wallingford, pp 369–390

    Book  Google Scholar 

  • Samineni S, Varshney RK, Sajja S, Thudi M, Jayalakshmi V, Vijayakumar A, Mannur D (2015) High yielding and drought tolerant genotypes developed through marker-assisted back crossing (MBAC) in chickpea

    Google Scholar 

  • Samineni S, Thudi M, Sajja SB, Varshney RK, Gaur PM (2017) Impact of Genomics on Chickpea Breeding. In: The Chickpea Genome. Springer, pp 125–134

    Google Scholar 

  • Santisree P, Bhatnagar-Mathur P, Sharma K (2017) The leaf proteome signatures provide molecular insights into the abiotic stress tolerance in chickpea: a priming and proteomics approach

    Google Scholar 

  • Shan F, Clarke H, Plummer J, Yan G, Siddique K (2005) Geographical patterns of genetic variation in the world collections of wild annual Cicer characterized by amplified fragment length polymorphisms. Theor Appl Genet 110(2):381–391

    Article  PubMed  Google Scholar 

  • Sharma S, Yadav N, Singh A, Kumar R (2013) Nutritional and antinutritional profile of newly developed chickpea (Cicer arietinum L) varieties. Int Food Res J 20(2):805

    Google Scholar 

  • Sheoran S, Singh R, Tripathi S (2018) Marker assisted backcross breeding in chickpea (Cicer arietinum L.) for drought tolerance. Int J Chem Std 6(1):1046–1050

    CAS  Google Scholar 

  • Silim S, Saxena M (1993) Adaptation of spring-sown chickpea to the Mediterranean basin. II. Factors influencing yield under drought. Field Crop Res 34(2):137–146

    Article  Google Scholar 

  • Singh B, Bohra A, Mishra S, Joshi R, Pandey S (2015) Embracing new-generation ‘omics’ tools to improve drought tolerance in cereal and food-legume crops. Biol Plant 59(3):413–428

    Article  CAS  Google Scholar 

  • Sinha R, Gupta A, Senthil-Kumar M (2017) Concurrent drought stress and vascular pathogen infection induce common and distinct transcriptomic responses in chickpea. Front Plant Sci 8:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivasakthi K, Thudi M, Tharanya M, Kale SM, Kholová J, Halime MH, Jaganathan D, Baddam R, Thirunalasundari T, Gaur PM (2018) Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. BMC Plant Biol 18(1):29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srinivasan S (2017) High yielding and drought tolerant genotypes developed through marker-assisted back crossing (MBAC) in chickpea. In: Int Plant Breeding Cong (IPBC)-Eucarpia

    Google Scholar 

  • Sudupak M, Akkaya M, Kence A (2002) Analysis of genetic relationships among perennial and annual Cicer species growing in Turkey using RAPD markers. Theor Appl Genet 105(8):1220–1228

    Article  CAS  PubMed  Google Scholar 

  • Summy S, Boora K, Sharma K (2016) Physiological traits in relation to yield improvement in chickpea (Cicer arietinum L.) under depleting soil moisture environment. Ind J Genet Plant Breed 76(2):209

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Asociates. Inc, Sunderland, MA

    Google Scholar 

  • Tas S, Tas B (2007) Some physiological responses of drought stress in wheat genotypes with different ploidity in Turkiye. World J Agric Sci 3(2):178–183

    Google Scholar 

  • Thudi M, Gaur PM, Krishnamurthy L, Mir RR, Kudapa H, Fikre A, Kimurto P, Tripathi S, Soren KR, Mulwa R (2014a) Genomics-assisted breeding for drought tolerance in chickpea. Funct Plant Biol 41(11):1178–1190

    Article  CAS  PubMed  Google Scholar 

  • Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao N (2014b) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9(5):e96758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toker C (2009) A note on the evolution of kabuli chickpeas as shown by induced mutations in Cicer reticulatum Ladizinsky. Genet Resour Crop Evol 56(1):7–12

    Article  Google Scholar 

  • Toker C, Canci H, Yildirim T (2007) Evaluation of perennial wild Cicer species for drought resistance. Genet Resour Crop Evol 54(8):1781–1786

    Article  Google Scholar 

  • Upadhyaya HD, Kashiwagi J, Varshney RK, Gaur P, Saxena K, Krishnamurthy L, Gowda C, Pundir R, Chaturvedi S, Basu P (2012) Phenotyping chickpeas and pigeonpeas for adaptation to drought. Front Physiol 3:179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM (2009) A comprehensive resource of drought-and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 10(1):523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S, Kashiwagi J, Samineni S, Singh VK, Thudi M, Jaganathan D (2013a) Fast-track introgression of “QTL-hotspot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. Plant Genome 6(3):1

    Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Gangarao N, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P (2013b) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31(8):1120–1134

    Article  PubMed  Google Scholar 

  • Varshney RK, Mir RR, Bhatia S, Thudi M, Hu Y, Azam S, Zhang Y, Jaganathan D, You FM, Gao J (2014a) Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.). Funct Integr Genomics 14(1):59–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S (2014b) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127(2):445–462

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Thudi M, Muehlbauer FJ (2017) The chickpea genome: an introduction. In: The chickpea genome. Springer, New York, NY, pp 1–4

    Chapter  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu Y, Jia Y, Gu H, Ma H, Yu T, Zhang H, Chen Q, Ma L, Gu A (2012) Transcriptional responses to drought stress in root and leaf of chickpea seedling. Mol Biol Rep 39(8):8147–8158

    Article  CAS  PubMed  Google Scholar 

  • Westbrook JA, Wheeler JX, Wait R, Welson SY, Dunn MJ (2006) The human heart proteome: two‐dimensional maps using narrow‐range immobilised pH gradients. Electrophoresis 27(8):1547–1555

    Article  CAS  PubMed  Google Scholar 

  • William P (1987) The chickpea-nutritional quality and the evaluation of quality in breeding programmes. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford

    Google Scholar 

  • Zaman-Allah M, Jenkinson DM, Vadez V (2011a) Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Funct Plant Biol 38(4):270–281

    Article  PubMed  Google Scholar 

  • Zaman-Allah M, Jenkinson DM, Vadez V (2011b) A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. J Exp Bot 62(12):4239–4252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Fung-Leung W-P, Bittner A, Ngo K, Liu X (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9(1):e78644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu J-K (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124(3):941–948

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Punjab Agricultural Research Board (Government of Punjab), Lahore, Pakistan for funding through Project PARB-938, as well as Centre for Advanced Studies in Agriculture and Food Security (CAS-AFS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana Muhammad Atif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waqas, M., Azhar, M.T., Rana, I.A., Arif, A., Atif, R.M. (2019). Drought Stress in Chickpea: Physiological, Breeding, and Omics Perspectives. In: Wani, S. (eds) Recent Approaches in Omics for Plant Resilience to Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-21687-0_9

Download citation

Publish with us

Policies and ethics