Skip to main content

Age-Dependent De Novo Mutations During Spermatogenesis and Their Consequences

  • Chapter
  • First Online:
Genetic Damage in Human Spermatozoa

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1166))

Abstract

Spermatogenesis is a highly complex biological process during which germ cells undergo recurrent rounds of DNA replication and cell division that may predispose to random mutational events. Hence, germ cells are vulnerable to the introduction of a range of de novo mutations, in particular chromosomal aberrations, point mutations and small indels. The main mechanisms through which mutations may occur during spermatogenesis are (i) errors in DNA replication, (ii) inefficient repair of non-replicative DNA damage between cell divisions and (iii) exposure to mutagens during lifetime. Any genetic alteration in the spermatozoa, if not repaired/eliminated, can be passed on to the offspring, potentially leading to malformations, chromosomal anomalies and monogenic diseases. Spontaneous de novo mutations tend to arise and accumulate with a higher frequency during testicular aging. In fact, there is an increased incidence of some chromosomal aberrations and a greater risk of congenital disorders, collectively termed paternal age effect (PAE), in children conceived by fathers with advanced age. PAE disorders are related to well-characterized de novo point mutations leading to a selective advantage on the mutant spermatogonial stem cells that cause a progressive enrichment over time of mutant spermatozoa in the testis.

The purpose of this chapter is to provide a summary on the spontaneous genetic alterations that occur during spermatogenesis, focusing on their underlying mechanisms and their consequences in the offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken RJ (1999) The Amoroso Lecture. The human spermatozoon--a cell in crisis? J Reprod Fertil 115(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Krausz C (2001) Oxidative stress, DNA damage and the Y chromosome. Reproduction (Cambridge, England) 122(4):497–506

    Article  CAS  Google Scholar 

  • Aksglaede L, Juul A (2013) Therapy of endocrine disease: testicular function and fertility in men with Klinefelter syndrome: a review. Eur J Endocrinol 168(4):R67–R76

    Article  CAS  PubMed  Google Scholar 

  • Aoki Y et al (2008) The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat 29(8):992–1006

    Article  CAS  PubMed  Google Scholar 

  • Asada H et al (2000) The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J Assist Reprod Genet 17(1):51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal SK et al (2016) Gr/gr deletions on Y-chromosome correlate with male infertility: an original study, meta-analyses, and trial sequential analyses. Sci Rep 6(1):19798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baptista J et al (2008) Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet 82(4):927–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellus GA et al (1995) Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet 56(2):368–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Besenbacher S et al (2015) Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios. Nat Commun 6(1):5969

    Article  CAS  PubMed  Google Scholar 

  • Blanco P et al (2000) Divergent outcomes of intrachromosomal recombination on the human Y chromosome: male infertility and recurrent polymorphism. J Med Genet 37(10):752–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch M et al (2001) Linear increase of diploidy in human sperm with age: a four-colour FISH study. Eur J Hum Genet 9(7):533–538

    Article  CAS  PubMed  Google Scholar 

  • Bosch M et al (2003) Linear increase of structural and numerical chromosome 9 abnormalities in human sperm regarding age. Eur J Hum Genet 11(10):754–759

    Article  CAS  PubMed  Google Scholar 

  • Brown AS et al (2002) Paternal age and risk of schizophrenia in adult offspring. Am J Psychiatry 159(9):1528–1533

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrne M et al (2003) Parental age and risk of schizophrenia: a case-control study. Arch Gen Psychiatry 60(7):673–678

    Article  PubMed  Google Scholar 

  • Calogero AE et al (2017) Klinefelter syndrome: cardiovascular abnormalities and metabolic disorders. J Endocrinol Invest 40(7):705–712

    Article  CAS  PubMed  Google Scholar 

  • Campbell CD, Eichler EE (2013) Properties and rates of germline mutations in humans. Trends Genet 29(10):575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell IM et al (2014) Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics. Am J Hum Genet 95(4):345–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chianese C, Brilli S, Krausz C (2014) Genomic changes in spermatozoa of the aging male. Adv Exp Med Biol 791:13–26

    Article  PubMed  Google Scholar 

  • Choi S-K et al (2008) A germ-line-selective advantage rather than an increased mutation rate can explain some unexpectedly common human disease mutations. Proc Natl Acad Sci U S A 105(29):10143–10148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S-K et al (2012) Positive selection for new disease mutations in the human germline: evidence from the heritable cancer syndrome multiple endocrine neoplasia type 2B. PLoS Genet. Payseur BA (ed) 8(2):e1002420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong JX et al (2015) The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities. Am J Hum Genet 97(2):199–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad DF et al (2011) Variation in genome-wide mutation rates within and between human families. Nat Genet 43(7):712–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crow JF (2000) The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet 1(1):40–47

    Article  CAS  PubMed  Google Scholar 

  • D’Onofrio BM et al (2014) Paternal age at childbearing and offspring psychiatric and academic morbidity. JAMA Psychiat 71(4):432

    Article  Google Scholar 

  • Dakouane Giudicelli M et al (2008) Increased achondroplasia mutation frequency with advanced age and evidence for G1138A mosaicism in human testis biopsies. Fertil Steril 89(6):1651–1656

    Article  PubMed  CAS  Google Scholar 

  • de Ligt J et al (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367(20):1921–1929

    Article  CAS  PubMed  Google Scholar 

  • Deciphering Developmental Disorders Study, Fitzgerald TW, et al (2015) Large-scale discovery of novel genetic causes of developmental disorders. Nature 519(7542):223–228

    Google Scholar 

  • Durkin MS et al (2008) Advanced parental age and the risk of autism spectrum disorder. Am J Epidemiol 168(11):1268–1276

    Article  PubMed  PubMed Central  Google Scholar 

  • Eble JN (1994) Spermatocytic seminoma. Hum Pathol 25(10):1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Eboreime J et al (2016) Estimating exceptionally rare germline and somatic mutation frequencies via next generation sequencing. PLoS One. Lo AWI (ed) 11(6):e0158340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eloualid A et al (2012) Association of spermatogenic failure with the b2/b3 partial AZFc deletion. PLoS One. Chadwick BP (ed) 7(4):e34902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epi4K Consortium et al (2013) De novo mutations in epileptic encephalopathies. Nature 501(7466):217–221

    Article  CAS  Google Scholar 

  • Francioli LC et al (2015) Genome-wide patterns and properties of de novo mutations in humans. Nat Genet 47(7):822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z et al (2016) Interpreting the dependence of mutation rates on age and time. PLoS Biol. Barton NH (ed) 14(1):e1002355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giachini C et al (2008) Partial AZFc deletions and duplications: clinical correlates in the Italian population. Hum Genet 124(4):399–410

    Article  CAS  PubMed  Google Scholar 

  • Giannoulatou E et al (2013) Contributions of intrinsic mutation rate and selfish selection to levels of de novo HRAS mutations in the paternal germline. Proc Natl Acad Sci 110(50):20152–20157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilman SR et al (2011) Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70(5):898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldmann JM et al (2018) Author Correction: parent-of-origin-specific signatures of de novo mutations. Nat Genet 50(11):1615

    Article  CAS  PubMed  Google Scholar 

  • Goriely A (2016) Decoding germline de novo point mutations. Nat Genet 48(8):823–824

    Article  CAS  PubMed  Google Scholar 

  • Goriely A, Wilkie AOM (2012) Paternal age effect mutations and selfish Spermatogonial selection: causes and consequences for human disease. Am J Hum Genet 90(2):175–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goriely A et al (2003) Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science (New York, NY) 301(5633):643–646

    Article  CAS  Google Scholar 

  • Goriely A et al (2005) Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Proc Natl Acad Sci 102(17):6051–6056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goriely A et al (2009) Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat Genet 41(11):1247–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goriely A et al (2013) Selfish spermatogonial selection: a novel mechanism for the association between advanced paternal age and neurodevelopmental disorders. Am J Psychiatry. Europe PMC Funders 170(6):599–608

    Article  PubMed  PubMed Central  Google Scholar 

  • Green RF et al (2010) Association of paternal age and risk for major congenital anomalies from the National Birth Defects Prevention Study, 1997 to 2004. Ann Epidemiol 20(3):241–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Grether JK et al (2009) Risk of autism and increasing maternal and paternal age in a large north American population. Am J Epidemiol 170(9):1118–1126

    Article  PubMed  Google Scholar 

  • Griffin DK et al (1995) Non-disjunction in human sperm: evidence for an effect of increasing paternal age. Hum Mol Genet 4(12):2227–2232

    Article  CAS  PubMed  Google Scholar 

  • Guttenbach M et al (2000) Meiotic nondisjunction of chromosomes 1, 17, 18, X, and Y in men more than 80 years of age. Biol Reprod 63(6):1727–1729

    Article  CAS  PubMed  Google Scholar 

  • Hansen RMS et al (2005) Fibroblast growth factor receptor 2, gain-of-function mutations, and tumourigenesis: investigating a potential link. J Pathol 207(1):27–31

    Article  CAS  PubMed  Google Scholar 

  • Hassold TJ (1998) Nondisjunction in the human male. Curr Top Dev Biol 37:383–406

    Article  CAS  PubMed  Google Scholar 

  • Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2(4):280–291

    Article  CAS  PubMed  Google Scholar 

  • Hassold T, Hunt P (2009) Maternal age and chromosomally abnormal pregnancies: what we know and what we wish we knew. Curr Opin Pediatr 21(6):703–708

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassold T, Hunt PA, Sherman S (1993) Trisomy in humans: incidence, origin and etiology. Curr Opin Genet Dev 3(3):398–403

    Article  CAS  PubMed  Google Scholar 

  • Hoischen A, Krumm N, Eichler EE (2014) Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat Neurosci 17(6):764–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ioannou D, Tempest HG (2015) Meiotic nondisjunction: insights into the origin and significance of aneuploidy in human spermatozoa. Adv Exp Med Biol 868:1–21

    Article  PubMed  Google Scholar 

  • Ioannou D, Fortun J, Tempest H (2018) Meiotic nondisjunction and sperm aneuploidy in humans. Reproduction. https://doi.org/10.1530/REP-18-0318. PMID: 30390610

  • Iossifov I et al (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515(7526):216–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalkman HO (2006) The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmacol Ther 110(1):117–134

    Article  CAS  PubMed  Google Scholar 

  • Kamp C et al (2000) Two long homologous retroviral sequence blocks in proximal Yq11 cause AZFa microdeletions as a result of intrachromosomal recombination events. Hum Mol Genet 9(17):2563–2572

    Article  CAS  PubMed  Google Scholar 

  • Kan S et al (2002) Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis. Am J Hum Genet 70(2):472–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kéri S et al (2009) Neuregulin 1-stimulated phosphorylation of AKT in psychotic disorders and its relationship with neurocognitive functions. Neurochem Int 55(7):606–609

    Article  PubMed  CAS  Google Scholar 

  • Kim JY et al (2009) DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 63(6):761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim IW et al (2013) 47,XYY syndrome and male infertility. Rev Urol 15(4):188–196

    PubMed  PubMed Central  Google Scholar 

  • Kinakin B, Rademaker A, Martin R (1997) Paternal age effect of YY aneuploidy in human sperm, as assessed by fluorescence in situ hybridization. Cytogenet Cell Genet 78(2):116–119

    Article  CAS  PubMed  Google Scholar 

  • Klejbor I et al (2006) Fibroblast growth factor receptor signaling affects development and function of dopamine neurons – inhibition results in a schizophrenia-like syndrome in transgenic mice. J Neurochem 97(5):1243–1258

    Article  CAS  PubMed  Google Scholar 

  • Kong A et al (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488(7412):471–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krab LC, Goorden SMI, Elgersma Y (2008) Oncogenes on my mind: ERK and MTOR signaling in cognitive diseases. Trends Genet 24(10):498–510

    Article  CAS  PubMed  Google Scholar 

  • Kratz CP et al (2009) Craniosynostosis in patients with Noonan syndrome caused by germline KRAS mutations. Am J Med Genet A 149A(5):1036–1040

    Article  CAS  PubMed  Google Scholar 

  • Krausz C, Casamonti E (2017) Spermatogenic failure and the Y chromosome. Hum Genet 136(5):637–655

    Article  CAS  PubMed  Google Scholar 

  • Krausz C, Degl’Innocenti S (2006) Y chromosome and male infertility: update, 2006. Front Biosci 11:3049–3061

    Article  CAS  PubMed  Google Scholar 

  • Krausz C et al (2006) Natural transmission of USP9Y gene mutations: a new perspective on the role of AZFa genes in male fertility. Hum Mol Genet 15(18):2673–2681

    Article  CAS  PubMed  Google Scholar 

  • Krausz C et al (2014) EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology 2(1):5–19

    Article  CAS  PubMed  Google Scholar 

  • Kurahashi H et al (2009) Recent advance in our understanding of the molecular nature of chromosomal abnormalities. J Hum Genet 54(5):253–260

    Article  CAS  PubMed  Google Scholar 

  • Kuroda-Kawaguchi T et al (2001) The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet 29(3):279–286

    Article  CAS  PubMed  Google Scholar 

  • Lange J et al (2009) Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell 138(5):855–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim J et al (2011) OCT2, SSX and SAGE1 reveal the phenotypic heterogeneity of spermatocytic seminoma reflecting distinct subpopulations of spermatogonia. J Pathol 224(4):473–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim J et al (2012) Selfish spermatogonial selection: evidence from an immunohistochemical screen in testes of elderly men. PLoS One. Shipley J (ed) 7(8):e42382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y-W et al (2007) Partial duplication at AZFc on the Y chromosome is a risk factor for impaired spermatogenesis in Han Chinese in Taiwan. Hum Mutat 28(5):486–494

    Article  CAS  PubMed  Google Scholar 

  • Lo Giacco D et al (2014) Clinical relevance of Y-linked CNV screening in male infertility: new insights based on the 8-year experience of a diagnostic genetic laboratory. Eur J Hum Genet 22(6):754–761

    Article  PubMed  CAS  Google Scholar 

  • Lowe X et al (2001) Frequency of XY sperm increases with age in fathers of boys with Klinefelter syndrome. Am J Hum Genet 69(5):1046–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C et al (2009) The b2/b3 subdeletion shows higher risk of spermatogenic failure and higher frequency of complete AZFc deletion than the gr/gr subdeletion in a Chinese population. Hum Mol Genet 18(6):1122–1130. https://doi.org/10.1093/hmg/ddn427

    Article  CAS  PubMed  Google Scholar 

  • Lu C et al (2014) Gene copy number alterations in the azoospermia-associated AZFc region and their effect on spermatogenic impairment. Mol Hum Reprod 20(9):836–843

    Article  CAS  PubMed  Google Scholar 

  • Luddi A et al (2009) Spermatogenesis in a man with complete deletion of USP9Y. N Engl J Med 360(9):881–885

    Article  CAS  PubMed  Google Scholar 

  • Luetjens CM et al (2002) Sperm aneuploidy rates in younger and older men. Hum Reprod 17(7):1826–1832

    Article  CAS  PubMed  Google Scholar 

  • Maher GJ, Goriely A, Wilkie AOM (2014) Cellular evidence for selfish spermatogonial selection in aged human testes. Andrology 2(3):304–314

    Article  CAS  PubMed  Google Scholar 

  • Maher GJ et al (2016a) Cellular correlates of selfish spermatogonial selection. Andrology 4(3):550–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maher GJ et al (2016b) Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes. Proc Natl Acad Sci U S A 113(9):2454–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maher GJ et al (2018) Selfish mutations dysregulating RAS-MAPK signaling are pervasive in aged human testes. Genome Res 28:1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makova KD, Li W-H (2002) Strong male-driven evolution of DNA sequences in humans and apes. Nature 416(6881):624–626

    Article  CAS  PubMed  Google Scholar 

  • Malaspina D et al (2001) Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry 58(4):361–367

    Article  CAS  PubMed  Google Scholar 

  • Malaspina D et al (2002) Paternal age and sporadic schizophrenia: evidence for de novo mutations. Am J Med Genet 114(3):299–303

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin RH, Rademaker AW (1987) The effect of age on the frequency of sperm chromosomal abnormalities in normal men. Am J Hum Genet 41(3):484–492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin RH et al (1995) The relationship between paternal age, sex ratios, and aneuploidy frequencies in human sperm, as assessed by multicolor FISH. Am J Hum Genet 57(6):1395–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  • McElreavey K, Krausz C (1999) Sex chromosome genetics ’99. Male infertility and the Y chromosome. Am J Hum Genet 64(4):928–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McInnes B et al (1998) Abnormalities for chromosomes 13 and 21 detected in spermatozoa from infertile men. Hum Reprod 13(1O):2787–2790

    Article  CAS  PubMed  Google Scholar 

  • Michaelson JJ et al (2012) Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151(7):1431–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin SJ et al (2017) Translocations, inversions and other chromosome rearrangements. Fertil Steril 107(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Morris JK et al (2008) Is the prevalence of Klinefelter syndrome increasing? Eur J Hum Genet 16(2):163–170

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Costa P, Gonçalves J, Plancha CE (2010) The AZFc region of the Y chromosome: at the crossroads between genetic diversity and male infertility. Hum Reprod Update 16(5):525–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noordam MJ et al (2011) Gene copy number reduction in the azoospermia factor c (AZFc) region and its effect on total motile sperm count. Hum Mol Genet 20(12):2457–2463

    Article  CAS  PubMed  Google Scholar 

  • O’Roak BJ et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43(6):585–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohye T et al (2010) Paternal origin of the de novo constitutional t(11;22)(q23;q11). Eur J Hum Genet 18(7):783–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson SB, Magenis RE (1988) Preferential paternal origin of de novo structural chromosome rearrangments. In: Daniels A (ed) Progress and topics in cytogenetics. The cytogenetics of mammalian autosomal rearrangements, vol 8. Liss, New York. pp 585–599

    Google Scholar 

  • Paul C, Robaire B (2013) Ageing of the male germ line. Nat Rev Urol 10(4):227–234

    Article  CAS  PubMed  Google Scholar 

  • Penrose LS (1955) Parental age and mutation. Lancet (London, England) 269(6885):312–313

    Article  CAS  Google Scholar 

  • Pinto D et al (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466(7304):368–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotton I et al (2010) Transmissible microdeletion of the Y-chromosome encompassing two DAZ copies, four RBMY1 copies, and both PRY copies. Fertil Steril 94(7):2770.e11–2770.e16

    Article  Google Scholar 

  • Qin J et al (2007) The molecular anatomy of spontaneous germline mutations in human testes. PLoS Biol. Crow J (ed) 5(9):e224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahbari R et al (2016) Timing, rates and spectra of human germline mutation. Nat Genet 48(2):126–133

    Article  CAS  PubMed  Google Scholar 

  • Rajpert-De Meyts E (2007) Recent advances and future directions in research on testicular germ cell cancer. Int J Androl 30(4):192–197

    Article  CAS  PubMed  Google Scholar 

  • Rannan-Eliya SV et al (2004) Paternal origin of FGFR3 mutations in Muenke-type craniosynostosis. Hum Genet 115(3):200–207

    Article  CAS  PubMed  Google Scholar 

  • Rauch A et al (2012) Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet (London, England) 380(9854):1674–1682

    Article  CAS  Google Scholar 

  • Raue F, Frank-Raue K (2010) Update multiple endocrine neoplasia type 2. Fam Cancer 9(3):449–457

    Article  CAS  PubMed  Google Scholar 

  • Repping S et al (2002) Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure. Am J Hum Genet 71(4):906–922

    Article  PubMed  PubMed Central  Google Scholar 

  • Repping S et al (2003) Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. Nat Genet 35(3):247–251

    Article  CAS  PubMed  Google Scholar 

  • Repping S et al (2006) High mutation rates have driven extensive structural polymorphism among human Y chromosomes. Nat Genet 38(4):463–467

    Article  CAS  PubMed  Google Scholar 

  • Risch N et al (1987) Spontaneous mutation and parental age in humans. Am J Hum Genet 41(2):218–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roach JC et al (2010) Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328(5978):636–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins WA et al (1997) Use of fluorescence in situ hybridization (FISH) to assess effects of smoking, caffeine, and alcohol on aneuploidy load in sperm of healthy men. Environ Mol Mutagen 30(2):175–183

    Article  CAS  PubMed  Google Scholar 

  • Rolf C et al (2002) Natural transmission of a partial AZFb deletion of the Y chromosome over three generations: case report. Hum Reprod 17(9):2267–2271

    Article  CAS  PubMed  Google Scholar 

  • Rousseau F et al (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371(6494):252–254. https://doi.org/10.1038/371252a0

    Article  CAS  PubMed  Google Scholar 

  • Rousseaux S et al (1998) Disomy rates for chromosomes 14 and 21 studied by fluorescent in-situ hybridization in spermatozoa from three men over 60 years of age. Mol Hum Reprod 4(7):695–699

    Article  CAS  PubMed  Google Scholar 

  • Rozen SG et al (2012) AZFc deletions and spermatogenic failure: a population-based survey of 20,000 Y chromosomes. Am J Hum Genet 91(5):890–896. https://doi.org/10.1016/j.ajhg.2012.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubes J et al (1998) Smoking cigarettes is associated with increased sperm disomy in teenage men. Fertil Steril 70(4):715–723

    Article  CAS  PubMed  Google Scholar 

  • Samuels IS, Saitta SC, Landreth GE (2009) MAP’ing CNS development and cognition: an ERKsome process. Neuron 61(2):160–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartorelli EM, Mazzucatto LF, de Pina-Neto JM (2001) Effect of paternal age on human sperm chromosomes. Fertil Steril 76(6):1119–1123

    Article  CAS  PubMed  Google Scholar 

  • Shankar RK, Backeljauw PF (2018) Current best practice in the management of Turner syndrome. Ther Adv Endocrinol Metab. SAGE Publications 9(1):33

    Article  PubMed  Google Scholar 

  • Shendure J, Akey JM (2015) The origins, determinants, and consequences of human mutations. Science (New York, NY) 349(6255):1478–1483

    Article  CAS  Google Scholar 

  • Shinde DN et al (2013) New evidence for positive selection helps explain the paternal age effect observed in achondroplasia. Hum Mol Genet 22(20):4117–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sin H-S et al (2010) Features of constitutive gr/gr deletion in a Japanese population. Hum Reprod 25(9):2396–2403

    Article  PubMed  Google Scholar 

  • Sloter E et al (2004) Effects of male age on the frequencies of germinal and heritable chromosomal abnormalities in humans and rodents. Fertil Steril 81(4):925–943

    Article  PubMed  Google Scholar 

  • Sloter ED et al (2007) Frequency of human sperm carrying structural aberrations of chromosome 1 increases with advancing age. Fertil Steril 87(5):1077–1086

    Article  PubMed  Google Scholar 

  • Soares AR et al (2012) AZFb microdeletions and oligozoospermia--which mechanisms? Fertil Steril 97(4):858–863

    Article  CAS  PubMed  Google Scholar 

  • Stouffs K et al (2011) What about gr/gr deletions and male infertility? Systematic review and meta-analysis. Hum Reprod Update 17(2):197–209

    Article  CAS  PubMed  Google Scholar 

  • Stouffs K et al (2017) Are AZFb deletions always incompatible with sperm production? Andrology 5(4):691–694

    Article  CAS  PubMed  Google Scholar 

  • Sun C et al (2000) Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. Hum Mol Genet 9(15):2291–2296

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia M, Zampino G, Gelb BD (2010) Noonan syndrome: clinical aspects and molecular pathogenesis. Mol Syndromol 1(1):2–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor J et al (2006) Strong and weak male mutation bias at different sites in the primate genomes: insights from the human-chimpanzee comparison. Mol Biol Evol 23(3):565–573

    Article  CAS  PubMed  Google Scholar 

  • Templado C et al (2011) Advanced age increases chromosome structural abnormalities in human spermatozoa. Eur J Hum Genet 19(2):145–151

    Article  PubMed  Google Scholar 

  • Thomas NS et al (2006) Parental and chromosomal origin of unbalanced de novo structural chromosome abnormalities in man. Hum Genet 119(4):444–450

    Article  PubMed  Google Scholar 

  • Thomas NS et al (2010) De novo apparently balanced translocations in man are predominantly paternal in origin and associated with a significant increase in paternal age. J Med Genet 47(2):112–115

    Article  PubMed  Google Scholar 

  • Tiemann-Boege I et al (2002) The observed human sperm mutation frequency cannot explain the achondroplasia paternal age effect. Proc Natl Acad Sci U S A 99(23):14952–14957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya KJ et al (2008) Paternal age at birth and high-functioning autistic-spectrum disorder in offspring. Br J Psychiatry 193(4):316–321

    Article  PubMed  Google Scholar 

  • Turner DJ et al (2008) Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nat Genet 40(1):90–95

    Article  CAS  PubMed  Google Scholar 

  • Tüttelmann F et al (2007) Gene polymorphisms and male infertility--a meta-analysis and literature review. Reprod Biomed Online 15(6):643–658

    Article  PubMed  Google Scholar 

  • Tyler-Smith C, Krausz C (2009) The will-o’-the-wisp of genetics — hunting for the azoospermia factor gene. N Engl J Med 360(9):925–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vajo Z, Francomano CA, Wilkin DJ (2000) The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocr Rev 21(1):23–39

    CAS  PubMed  Google Scholar 

  • Vijesh VV et al (2015) Screening for AZFc partial deletions in Dravidian men with nonobstructive azoospermia and oligozoospermia. Genet Test Mol Biomarkers 19(3):150–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser L et al (2009) Y chromosome gr/gr deletions are a risk factor for low semen quality. Hum Reprod 24(10):2667–2673

    Article  CAS  PubMed  Google Scholar 

  • Vissers LELM et al (2010) A de novo paradigm for mental retardation. Nat Genet 42(12):1109–1112

    Article  CAS  PubMed  Google Scholar 

  • Wapner RJ et al (2012) Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 367(23):2175–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weckselblatt B, Hermetz KE, Rudd MK (2015) Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res 25(7):937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkie AOM et al (1995) Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 9(2):165–172

    Article  CAS  PubMed  Google Scholar 

  • Wilson Sayres MA, Makova KD (2011) Genome analyses substantiate male mutation bias in many species. Bioessays 33(12):938–945

    Article  PubMed  Google Scholar 

  • Wu B et al (2007) A frequent Y chromosome b2/b3 subdeletion shows strong association with male infertility in Han-Chinese population. Hum Reprod 22(4):1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Yanagimachi R, Yanagimachi H, Rogers BJ (1976) The use of zona-free animal ova as a test-system for the assessment of the fertilizing capacity of human spermatozoa. Biol Reprod 15(4):471–476

    Article  CAS  PubMed  Google Scholar 

  • Yang Y et al (2010) Differential effect of specific gr/gr deletion subtypes on spermatogenesis in the Chinese Han population. Int J Androl 33(5):745–754

    Article  CAS  PubMed  Google Scholar 

  • Yang B et al (2015) Common AZFc structure may possess the optimal spermatogenesis efficiency relative to the rearranged structures mediated by non-allele homologous recombination. Sci Rep 5(1):10551

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye J et al (2013) Partial AZFc duplications not deletions are associated with male infertility in the Yi population of Yunnan Province, China. J Zhejiang Univ Sci B 14(9):807–815

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon S-R et al (2009) The ups and downs of mutation frequencies during aging can account for the Apert syndrome paternal age effect. PLoS Genet.. Walsh B (ed) 5(7):e1000558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon S-R et al (2013) Age-dependent germline mosaicism of the most common noonan syndrome mutation shows the signature of germline selection. Am J Hum Genet 92(6):917–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y-S et al (2017) Complete azoospermia factor b deletion of Y chromosome in an infertile male with severe Oligoasthenozoospermia: case report and literature review. Urology 102:111–115

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csilla Krausz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cioppi, F., Casamonti, E., Krausz, C. (2019). Age-Dependent De Novo Mutations During Spermatogenesis and Their Consequences. In: Baldi, E., Muratori, M. (eds) Genetic Damage in Human Spermatozoa. Advances in Experimental Medicine and Biology, vol 1166. Springer, Cham. https://doi.org/10.1007/978-3-030-21664-1_2

Download citation

Publish with us

Policies and ethics